論文の概要: Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2103.10531v1
- Date: Thu, 18 Mar 2021 21:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 14:37:30.238211
- Title: Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation
- Title(参考訳): 教師なしニューラルネットワーク翻訳における事前学習言語モデルの語彙能力の向上
- Authors: Alexandra Chronopoulou, Dario Stojanovski and Alexander Fraser
- Abstract要約: クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
- 参考スコア(独自算出の注目度): 127.81351683335143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successful methods for unsupervised neural machine translation (UNMT) employ
cross-lingual pretraining via self-supervision, often in the form of a masked
language modeling or a sequence generation task, which requires the model to
align the lexical- and high-level representations of the two languages. While
cross-lingual pretraining works for similar languages with abundant corpora, it
performs poorly in low-resource, distant languages. Previous research has shown
that this is because the representations are not sufficiently aligned. In this
paper, we enhance the bilingual masked language model pretraining with
lexical-level information by using type-level cross-lingual subword embeddings.
Empirical results demonstrate improved performance both on UNMT (up to 4.5
BLEU) and bilingual lexicon induction using our method compared to an
established UNMT baseline.
- Abstract(参考訳): unsupervised neural machine translation (UNMT) の成功した方法は、しばしばマスク付き言語モデリングやシーケンス生成タスクという形で、自己超越による言語間事前訓練(英語版)を採用する。
言語間プレトレーニングは、豊富なコーパスを持つ類似言語で機能するが、低リソース、遠方の言語では機能しない。
以前の研究では、表現が十分に整っていないことが示されている。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
UNMT (最大4.5 BLEU) とバイリンガルレキシコン誘導 (バイリンガルレキシコン誘導) の両方において, 既存のUNMTベースラインと比較して, 良好な性能を示した。
関連論文リスト
- Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Learning to translate by learning to communicate [11.43638897327485]
我々は,最新のunsupervised NMTシステムを改善するために,事前学習された多言語モデルを用いてEmergent Communication (EC)を使用する手法を定式化し,検証する。
提案手法では,多言語モデルを用いて視覚的なタスクを遂行するために,多言語世代をインセンティブとしたEC画像参照ゲームに,多言語モデルを組み込む。
本報告では,2種類のECファインチューニング(Steinert-Threlkeld et al., 2022)について述べる。
論文 参考訳(メタデータ) (2022-07-14T15:58:06Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
本稿では,埋め込みの整合性を向上し,ゼロショットの言語間転送性能を向上させることを目的とする。
本稿では,従来の知識として統計アライメント情報を用いて,バイリンガル単語予測を導出するアライメント言語モデル(Alignment Language Model, AlignLM)を提案する。
その結果、AlignLMはMLQAおよびXNLIデータセット上でゼロショット性能を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-06-03T10:18:43Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-Mは、複数の言語の表現をモノリンガルコーパスと整合させる新しいトレーニング手法である。
単言語コーパス上で擬似並列文ペアを生成し、異なる言語間のセマンティックアライメントの学習を可能にする。
実験結果から,ERNIE-Mは既存の言語間モデルよりも優れており,様々な言語間下流タスクに対して新たな最先端結果を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:52:27Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
本稿では,オープンソース言語上でのみ事前訓練されたLMを再利用する効果的な手法を提案する。
モノリンガルLMは両言語で微調整され、UNMTモデルの初期化に使用される。
我々のアプローチであるRE-LMは、英語・マケドニア語(En-Mk)と英語・アルバニア語(En-Sq)の競合言語間事前学習モデル(XLM)より優れています。
論文 参考訳(メタデータ) (2020-09-16T11:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。