Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks
- URL: http://arxiv.org/abs/2003.06696v3
- Date: Mon, 14 Sep 2020 18:34:20 GMT
- Title: Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks
- Authors: Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Kenneth Chaney,
Kostas Daniilidis, and Kaushik Roy
- Abstract summary: We present Spike-FlowNet, a deep hybrid neural network architecture integrating SNNs and ANNs for efficiently estimating optical flow from sparse event camera outputs.
The network is end-to-end trained with self-supervised learning on Multi-Vehicle Stereo Event Camera (MVSEC) dataset.
- Score: 40.44712305614071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event-based cameras display great potential for a variety of tasks such as
high-speed motion detection and navigation in low-light environments where
conventional frame-based cameras suffer critically. This is attributed to their
high temporal resolution, high dynamic range, and low-power consumption.
However, conventional computer vision methods as well as deep Analog Neural
Networks (ANNs) are not suited to work well with the asynchronous and discrete
nature of event camera outputs. Spiking Neural Networks (SNNs) serve as ideal
paradigms to handle event camera outputs, but deep SNNs suffer in terms of
performance due to the spike vanishing phenomenon. To overcome these issues, we
present Spike-FlowNet, a deep hybrid neural network architecture integrating
SNNs and ANNs for efficiently estimating optical flow from sparse event camera
outputs without sacrificing the performance. The network is end-to-end trained
with self-supervised learning on Multi-Vehicle Stereo Event Camera (MVSEC)
dataset. Spike-FlowNet outperforms its corresponding ANN-based method in terms
of the optical flow prediction capability while providing significant
computational efficiency.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - SDformerFlow: Spatiotemporal swin spikeformer for event-based optical flow estimation [10.696635172502141]
Event cameras generate asynchronous and sparse event streams capturing changes in light intensity.
Spiking neural networks (SNNs) share similar asynchronous and sparse characteristics and are well-suited for event cameras.
We propose two solutions for fast and robust optical flow estimation for event cameras: STTFlowNet and SDFlowformer.
arXiv Detail & Related papers (2024-09-06T07:48:18Z) - A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation [3.355813093377501]
Event cameras operate differently from traditional digital cameras, continuously capturing data and generating binary spikes that encode time, location, and light intensity.
This necessitates the development of innovative, spike-aware algorithms tailored for event cameras.
We propose a purely spike-driven spike transformer network for depth estimation from spiking camera data.
arXiv Detail & Related papers (2024-04-26T11:32:53Z) - Best of Both Worlds: Hybrid SNN-ANN Architecture for Event-based Optical Flow Estimation [12.611797572621398]
Spiking Neural Networks (SNNs) with their asynchronous event-driven compute show great potential for extracting features from event streams.
We propose a novel SNN-ANN hybrid architecture that combines the strengths of both.
arXiv Detail & Related papers (2023-06-05T15:26:02Z) - Neuromorphic Optical Flow and Real-time Implementation with Event
Cameras [47.11134388304464]
We build on the latest developments in event-based vision and spiking neural networks.
We propose a new network architecture that improves the state-of-the-art self-supervised optical flow accuracy.
We demonstrate high speed optical flow prediction with almost two orders of magnitude reduced complexity.
arXiv Detail & Related papers (2023-04-14T14:03:35Z) - MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network [8.53512216864715]
Spiking neural network is a novel event-based computational paradigm that is considered to be well suited for processing event camera tasks.
This work proposes a spiking neural network architecture with a novel residual block designed and multi-dimension attention modules combined.
This model outperforms previous ANN networks of the same size on the MVSEC dataset and shows great computational efficiency.
arXiv Detail & Related papers (2022-11-22T10:35:36Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Fusion-FlowNet: Energy-Efficient Optical Flow Estimation using Sensor
Fusion and Deep Fused Spiking-Analog Network Architectures [7.565038387344594]
We present a sensor fusion framework for energy-efficient optical flow estimation using both frame- and event-based sensors.
Our network is end-to-end trained using unsupervised learning to avoid expensive video annotations.
arXiv Detail & Related papers (2021-03-19T02:03:33Z) - Event-Based Angular Velocity Regression with Spiking Networks [51.145071093099396]
Spiking Neural Networks (SNNs) process information conveyed as temporal spikes rather than numeric values.
We propose, for the first time, a temporal regression problem of numerical values given events from an event camera.
We show that we can successfully train an SNN to perform angular velocity regression.
arXiv Detail & Related papers (2020-03-05T17:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.