論文の概要: Empirical Analysis of Machine Learning Configurations for Prediction of
Multiple Organ Failure in Trauma Patients
- arxiv url: http://arxiv.org/abs/2103.10929v1
- Date: Fri, 19 Mar 2021 17:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 14:43:20.340084
- Title: Empirical Analysis of Machine Learning Configurations for Prediction of
Multiple Organ Failure in Trauma Patients
- Title(参考訳): 外傷患者の多臓器不全予測のための機械学習構成の実証分析
- Authors: Yuqing Wang, Yun Zhao, Rachael Callcut, and Linda Petzold
- Abstract要約: 多臓器不全(MOF)は生命を脅かす状態である。
包括的機械学習(ML)構成を用いた初期MOF予測の定量的解析を行う。
- 参考スコア(独自算出の注目度): 7.122236250657051
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multiple organ failure (MOF) is a life-threatening condition. Due to its
urgency and high mortality rate, early detection is critical for clinicians to
provide appropriate treatment. In this paper, we perform quantitative analysis
on early MOF prediction with comprehensive machine learning (ML)
configurations, including data preprocessing (missing value treatment, label
balancing, feature scaling), feature selection, classifier choice, and
hyperparameter tuning. Results show that classifier choice impacts both the
performance improvement and variation most among all the configurations. In
general, complex classifiers including ensemble methods can provide better
performance than simple classifiers. However, blindly pursuing complex
classifiers is unwise as it also brings the risk of greater performance
variation.
- Abstract(参考訳): 多発性臓器不全(MOF)は致命的な疾患である。
緊急性や死亡率が高いため、臨床医が適切な治療を行うには早期発見が不可欠である。
本稿では,データ前処理(損失値処理,ラベルバランス,特徴スケーリング),特徴選択,分類器選択,ハイパーパラメータチューニングなどを含む,包括的な機械学習(ML)構成による初期MOF予測の定量的解析を行う。
その結果、分類器の選択は、すべての構成の中でパフォーマンス改善とバリエーションの両方に影響を及ぼすことがわかった。
一般に、アンサンブルメソッドを含む複雑な分類器は、単純な分類器よりも優れた性能を提供できる。
しかし、複雑な分類器を盲目的に追求することは、性能のばらつきを増大させるリスクをもたらすため、無意識である。
関連論文リスト
- Exploring Machine Learning Models for Lung Cancer Level Classification: A comparative ML Approach [0.0]
本稿では,肺がんレベルを分類する機械学習(ML)モデルについて検討する。
オーバーフィッティングを減らし、パフォーマンスを最適化するために、最小の児童体重と学習率モニタリングを使用します。
投票やバッグングを含むアンサンブル手法も、予測精度と堅牢性を高めることを約束している。
論文 参考訳(メタデータ) (2024-08-23T04:56:36Z) - Class-attribute Priors: Adapting Optimization to Heterogeneity and
Fairness Objective [54.33066660817495]
現代の分類問題は、個々のクラスにまたがって不均一性を示す。
本稿では,クラス固有の学習戦略を効果的かつ汎用的に生成するCAPを提案する。
CAPは先行技術と競合しており、その柔軟性により、バランスの取れた精度以上の公平性目標に対する明確なメリットが期待できる。
論文 参考訳(メタデータ) (2024-01-25T17:43:39Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Extension of Transformational Machine Learning: Classification Problems [0.0]
本研究では、薬物発見における変換機械学習(TML)の適用と性能について検討する。
メタ学習アルゴリズムであるTMLは、さまざまなドメインにまたがる共通属性の活用に優れています。
薬物発見プロセスは複雑で時間を要するが、予測精度の増大から大きな恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-08-07T07:34:18Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
多臓器不全 (MOF) は集中治療室 (ICU) 患者の死亡率が高い重篤な症候群である。
機械学習モデルを電子健康記録に適用することは、欠落した値の広範性のために難しい。
論文 参考訳(メタデータ) (2021-06-22T15:49:01Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Optimization of Genomic Classifiers for Clinical Deployment: Evaluation
of Bayesian Optimization to Select Predictive Models of Acute Infection and
In-Hospital Mortality [0.0]
血液から特定の遺伝子の発現レベルを定量化することにより、患者の免疫反応を特徴づけることにより、両方のタスクを遂行する潜在的によりタイムリーで正確な手段を示す。
機械学習手法は、デプロイ対応の分類モデルの開発にこの‘ホスト応答’を活用するプラットフォームを提供する。
急性感染症の診断分類器の開発におけるHO法と29の診断マーカーの遺伝子発現による院内死亡率の比較を行った。
論文 参考訳(メタデータ) (2020-03-27T10:22:02Z) - An Efficient Framework for Automated Screening of Clinically Significant
Macular Edema [0.41998444721319206]
本研究は,臨床上重要な黄斑浮腫(CSME)の自動スクリーニングのための新しいアプローチを提案する。
提案手法は、トレーニング済みのディープニューラルネットワークとメタヒューリスティックな特徴選択を組み合わせたものである。
スクイードデータセットの効果を克服するために、機能領域のオーバーサンプリング技術が使用されている。
論文 参考訳(メタデータ) (2020-01-20T07:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。