論文の概要: Stereo CenterNet based 3D Object Detection for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2103.11071v1
- Date: Sat, 20 Mar 2021 02:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:36:12.260822
- Title: Stereo CenterNet based 3D Object Detection for Autonomous Driving
- Title(参考訳): ステレオセンターネットを用いた自律走行のための3次元物体検出
- Authors: Yuguang Shi, Zhenqiang Mi, Yu Guo
- Abstract要約: ステレオ画像の幾何学的情報を用いた3次元物体検出手法Stereo CenterNetを提案する。
Stereo CenterNetは、空間内のオブジェクトの3D境界ボックスの4つの意味キーポイントを予測し、3D空間におけるオブジェクトのバウンディングボックスを復元するために、2D左の右ボックス、3D次元、向き、キーポイントを使用する。
KITTIデータセットを用いた実験により, ステレオ幾何に基づく最先端手法と比較して, 高速かつ高精度なトレードオフを実現することができた。
- 参考スコア(独自算出の注目度): 2.508414661327797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, 3D detection based on stereo cameras has made great
progress, but most state-of-the-art methods use anchor-based 2D detection or
depth estimation to solve this problem. However, the high computational cost
makes these methods difficult to meet real-time performance. In this work, we
propose a 3D object detection method using geometric information in stereo
images, called Stereo CenterNet. Stereo CenterNet predicts the four semantic
key points of the 3D bounding box of the object in space and uses 2D left right
boxes, 3D dimension, orientation and key points to restore the bounding box of
the object in the 3D space. Then, we use an improved photometric alignment
module to further optimize the position of the 3D bounding box. Experiments
conducted on the KITTI dataset show that our method achieves the best
speed-accuracy trade-off compared with the state-of-the-art methods based on
stereo geometry.
- Abstract(参考訳): 近年,ステレオカメラによる3D検出は大きな進歩を遂げているが,現状のほとんどの手法ではアンカーベースの2D検出や深さ推定を用いてこの問題を解決している。
しかし,計算コストが高いため,リアルタイム性能の達成が困難である。
本研究ではステレオ画像の幾何学的情報を用いた3次元物体検出手法Stereo CenterNetを提案する。
Stereo CenterNetは、空間内のオブジェクトの3D境界ボックスの4つの意味キーポイントを予測し、3D空間におけるオブジェクトのバウンディングボックスを復元するために、2D左の右ボックス、3D次元、向き、キーポイントを使用する。
そして、改良された測光アライメントモジュールを使用して、3Dバウンディングボックスの位置をさらに最適化する。
KITTIデータセットを用いた実験により, ステレオ幾何に基づく最先端手法と比較して, 高速かつ高精度なトレードオフを実現することができた。
関連論文リスト
- AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
形状認識型2D/3D制約を3D検出フレームワークに組み込む手法を提案する。
具体的には、ディープニューラルネットワークを用いて、2次元画像領域の区別された2Dキーポイントを学習する。
2D/3Dキーポイントの基礎的真理を生成するために、自動的なモデル適合手法が提案されている。
論文 参考訳(メタデータ) (2021-08-25T08:50:06Z) - LIGA-Stereo: Learning LiDAR Geometry Aware Representations for
Stereo-based 3D Detector [80.7563981951707]
本稿では,LIGA-Stereoによるステレオ3次元検出器の学習について,LiDARに基づく検出モデルの高レベルな幾何認識表現の指導の下で提案する。
現状のステレオ検出器と比較して,車,歩行者,サイクリストの3次元検出性能は,それぞれ10.44%,5.69%,5.97%向上した。
論文 参考訳(メタデータ) (2021-08-18T17:24:40Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
特徴アライメントと非対称非局所的注意を有するモノクロ3次元単段物体検出器(M3DSSD)を提案する。
提案したM3DSSDは,KITTIデータセット上のモノラルな3Dオブジェクト検出手法よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2021-03-24T13:09:11Z) - Stereo Object Matching Network [78.35697025102334]
本稿では,画像からの2次元コンテキスト情報と3次元オブジェクトレベル情報の両方を利用するステレオオブジェクトマッチング手法を提案する。
コストボリューム空間における3次元オブジェクト性を扱うための新しい方法として, 選択的サンプリング (RoISelect) と 2D-3D 融合がある。
論文 参考訳(メタデータ) (2021-03-23T12:54:43Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency
Embedding Space for Autonomous Driving [3.222802562733787]
RTS3Dというステレオ画像から効率的かつ高精度な3次元物体検出法を提案する。
KITTIベンチマークの実験は、RTS3Dがステレオ画像3D検出のための最初の真のリアルタイムシステムであることを示しています。
論文 参考訳(メタデータ) (2020-12-30T07:56:37Z) - Object-Aware Centroid Voting for Monocular 3D Object Detection [30.59728753059457]
本研究では, 深度を学習することなく, 終端から終端までトレーニング可能な単分子3次元物体検出器を提案する。
領域的外見の注意と幾何学的射影分布の両面を考慮した,新しいオブジェクト認識型投票手法が導入された。
遅延融合と予測される3D方向と次元により、オブジェクトの3D境界ボックスは単一のRGB画像から検出できる。
論文 参考訳(メタデータ) (2020-07-20T02:11:18Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
最も成功した3D検出器は、3Dバウンディングボックスから2Dボックスへの投射制約を重要な構成要素としている。
画像空間における3次元境界ボックスの9つの視点キーポイントを予測し、3次元空間における3次元視点と2次元視点の幾何学的関係を利用して、次元、位置、方向を復元する。
提案手法は,KITTIベンチマークの最先端性能を達成しつつ,モノクロ画像の3次元検出を行う最初のリアルタイムシステムである。
論文 参考訳(メタデータ) (2020-01-10T08:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。