Stereo CenterNet based 3D Object Detection for Autonomous Driving
- URL: http://arxiv.org/abs/2103.11071v1
- Date: Sat, 20 Mar 2021 02:18:49 GMT
- Title: Stereo CenterNet based 3D Object Detection for Autonomous Driving
- Authors: Yuguang Shi, Zhenqiang Mi, Yu Guo
- Abstract summary: We propose a 3D object detection method using geometric information in stereo images, called Stereo CenterNet.
Stereo CenterNet predicts the four semantic key points of the 3D bounding box of the object in space and uses 2D left right boxes, 3D dimension, orientation and key points to restore the bounding box of the object in the 3D space.
Experiments conducted on the KITTI dataset show that our method achieves the best speed-accuracy trade-off compared with the state-of-the-art methods based on stereo geometry.
- Score: 2.508414661327797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, 3D detection based on stereo cameras has made great
progress, but most state-of-the-art methods use anchor-based 2D detection or
depth estimation to solve this problem. However, the high computational cost
makes these methods difficult to meet real-time performance. In this work, we
propose a 3D object detection method using geometric information in stereo
images, called Stereo CenterNet. Stereo CenterNet predicts the four semantic
key points of the 3D bounding box of the object in space and uses 2D left right
boxes, 3D dimension, orientation and key points to restore the bounding box of
the object in the 3D space. Then, we use an improved photometric alignment
module to further optimize the position of the 3D bounding box. Experiments
conducted on the KITTI dataset show that our method achieves the best
speed-accuracy trade-off compared with the state-of-the-art methods based on
stereo geometry.
Related papers
- AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - LIGA-Stereo: Learning LiDAR Geometry Aware Representations for
Stereo-based 3D Detector [80.7563981951707]
We propose LIGA-Stereo to learn stereo-based 3D detectors under the guidance of high-level geometry-aware representations of LiDAR-based detection models.
Compared with the state-of-the-art stereo detector, our method has improved the 3D detection performance of cars, pedestrians, cyclists by 10.44%, 5.69%, 5.97% mAP respectively.
arXiv Detail & Related papers (2021-08-18T17:24:40Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Stereo Object Matching Network [78.35697025102334]
This paper presents a stereo object matching method that exploits both 2D contextual information from images and 3D object-level information.
We present two novel strategies to handle 3D objectness in the cost volume space: selective sampling (RoISelect) and 2D-3D fusion.
arXiv Detail & Related papers (2021-03-23T12:54:43Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency
Embedding Space for Autonomous Driving [3.222802562733787]
We propose an efficient and accurate 3D object detection method from stereo images, named RTS3D.
Experiments on the KITTI benchmark show that RTS3D is the first true real-time system for stereo image 3D detection.
arXiv Detail & Related papers (2020-12-30T07:56:37Z) - Object-Aware Centroid Voting for Monocular 3D Object Detection [30.59728753059457]
We propose an end-to-end trainable monocular 3D object detector without learning the dense depth.
A novel object-aware voting approach is introduced, which considers both the region-wise appearance attention and the geometric projection distribution.
With the late fusion and the predicted 3D orientation and dimension, the 3D bounding boxes of objects can be detected from a single RGB image.
arXiv Detail & Related papers (2020-07-20T02:11:18Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component.
Our method predicts the nine perspective keypoints of a 3D bounding box in image space, and then utilize the geometric relationship of 3D and 2D perspectives to recover the dimension, location, and orientation in 3D space.
Our method is the first real-time system for monocular image 3D detection while achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2020-01-10T08:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.