論文の概要: Local Interpretations for Explainable Natural Language Processing: A
Survey
- arxiv url: http://arxiv.org/abs/2103.11072v1
- Date: Sat, 20 Mar 2021 02:28:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 15:01:44.478107
- Title: Local Interpretations for Explainable Natural Language Processing: A
Survey
- Title(参考訳): 説明可能な自然言語処理のための局所解釈:調査
- Authors: Siwen Luo and Hamish Ivison and Caren Han and Josiah Poon
- Abstract要約: 本研究は,自然言語処理(nlp)タスクのための深層ニューラルネットワークの解釈性を改善するための様々な手法を検討する。
本研究の始めにテキスト解釈可能性という用語の定義とその様々な側面に関する包括的な議論を行います。
- 参考スコア(独自算出の注目度): 0.6882042556551611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the use of deep learning techniques has grown across various fields over
the past decade, complaints about the opaqueness of the black-box models have
increased, resulting in an increased focus on transparency in deep learning
models. This work investigates various methods to improve the interpretability
of deep neural networks for natural language processing (NLP) tasks, including
machine translation and sentiment analysis. We provide a comprehensive
discussion on the definition of the term \textit{interpretability} and its
various aspects at the beginning of this work. The methods collected and
summarised in this survey are only associated with local interpretation and are
divided into three categories: 1) explaining the model's predictions through
related input features; 2) explaining through natural language explanation; 3)
probing the hidden states of models and word representations.
- Abstract(参考訳): 過去10年間で深層学習技術が様々な分野に普及するにつれて、ブラックボックスモデルの不透明性に対する不満が高まり、ディープラーニングモデルの透明性に焦点が当てられるようになった。
本研究は,自然言語処理(nlp)タスクのための深層ニューラルネットワークの解釈性を改善するために,機械翻訳や感情分析を含む様々な手法を検討する。
本稿では,「textit{interpretability}」という用語の定義とその研究開始時の諸側面について包括的に議論する。
本調査で収集・要約した手法は,局所的な解釈にのみ関連しており,1)関連入力特徴によるモデル予測の説明,2)自然言語による説明,3)モデルと単語表現の隠れた状態の探索,の3つのカテゴリに分類される。
関連論文リスト
- Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
本稿では拡散潜在空間の教師なし探索のための新しい枠組みを提案する。
我々は、自然言語のプロンプトと画像キャプションを直接利用して、遅延方向をマップする。
本手法は,拡散モデルに符号化された意味的知識をよりスケーラブルで解釈可能な理解を提供する。
論文 参考訳(メタデータ) (2024-10-25T21:44:51Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - FICNN: A Framework for the Interpretation of Deep Convolutional Neural
Networks [0.0]
本研究の目的は,視覚データから学習したCNNモデルを対象とした解釈手法の研究のためのフレームワークを提案することである。
提案する要因のごく一部と組み合わせが実際に研究されていることを,我々のフレームワークが強調する。
論文 参考訳(メタデータ) (2023-05-17T10:59:55Z) - Explainability of Text Processing and Retrieval Methods: A Critical
Survey [1.5320737596132752]
本稿では,自然言語処理と情報検索手法の説明可能性と解釈可能性について概説する。
具体的には、単語埋め込み、シーケンスモデリング、アテンションモジュール、トランスフォーマー、BERT、文書ランキングの説明に応用されたアプローチについて調査する。
論文 参考訳(メタデータ) (2022-12-14T09:25:49Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
モデル予測動作を2つの新しいモジュールで解釈するLearable Visual Words (LVW)を提案する。
意味的な視覚的単語学習は、カテゴリ固有の制約を緩和し、異なるカテゴリ間で共有される一般的な視覚的単語を可能にする。
6つの視覚的ベンチマーク実験により,提案したLVWの精度とモデル解釈における優れた効果が示された。
論文 参考訳(メタデータ) (2022-05-22T03:24:45Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
言語モデルは、NLPのワークホースとして登場し、ますます流動的な生成能力を示している。
我々は、多くの次元にまたがる明瞭さの欠如を観察し、研究者が形成する仮説に影響を及ぼす。
本稿では,構文研究における様々な研究課題の意義について概説する。
論文 参考訳(メタデータ) (2021-10-17T18:25:23Z) - On the Faithfulness Measurements for Model Interpretations [100.2730234575114]
ポストホックな解釈は、自然言語処理(NLP)モデルがどのように予測を行うかを明らかにすることを目的とする。
これらの問題に取り組むために,我々は,削除基準,解釈の感度,解釈の安定性という3つの基準から始める。
これらの忠実性概念のデシデラタムに動機づけられ、敵対的領域からのテクニックを採用する新しい解釈方法のクラスを導入する。
論文 参考訳(メタデータ) (2021-04-18T09:19:44Z) - Interpretable Deep Learning: Interpretations, Interpretability,
Trustworthiness, and Beyond [49.93153180169685]
一般に混同される2つの基本的な概念(解釈と解釈可能性)を紹介・明らかにする。
我々は,新しい分類法を提案することにより,異なる視点から,最近のいくつかの解釈アルゴリズムの設計を詳細に述べる。
信頼される」解釈アルゴリズムを用いてモデルの解釈可能性を評価する上での既存の作業をまとめる。
論文 参考訳(メタデータ) (2021-03-19T08:40:30Z) - A Survey on Neural Network Interpretability [25.27545364222555]
解釈性は、深層ネットワークが他の研究分野で強力なツールになるのに望ましい特性である。
本研究では,エンゲージメントのタイプ(パッシブ対アクティブ解釈アプローチ),説明のタイプ,焦点の3次元に整理した新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-12-28T15:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。