UAV Communications for Sustainable Federated Learning
- URL: http://arxiv.org/abs/2103.11073v1
- Date: Sat, 20 Mar 2021 02:29:03 GMT
- Title: UAV Communications for Sustainable Federated Learning
- Authors: Quoc-Viet Pham and Ming Zeng and Rukhsana Ruby and Thien Huynh-The and
Won-Joo Hwang
- Abstract summary: Federated learning (FL), invented by Google in 2016, has become a hot research trend.
We propose to apply unmanned aerial vehicle (UAV)-empowered wireless power transfer to enable sustainable FL-based wireless networks.
- Score: 8.436687574137386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL), invented by Google in 2016, has become a hot
research trend. However, enabling FL in wireless networks has to overcome the
limited battery challenge of mobile users. In this regard, we propose to apply
unmanned aerial vehicle (UAV)-empowered wireless power transfer to enable
sustainable FL-based wireless networks. The objective is to maximize the UAV
transmit power efficiency, via a joint optimization of transmission time and
bandwidth allocation, power control, and the UAV placement. Directly solving
the formulated problem is challenging, due to the coupling of variables. Hence,
we leverage the decomposition technique and a successive convex approximation
approach to develop an efficient algorithm, namely UAV for sustainable FL
(UAV-SFL). Finally, simulations illustrate the potential of our proposed
UAV-SFL approach in providing a sustainable solution for FL-based wireless
networks, and in reducing the UAV transmit power by 32.95%, 63.18%, and 78.81%
compared with the benchmarks.
Related papers
- Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs)
We consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility.
We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space.
arXiv Detail & Related papers (2024-11-21T09:34:48Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
This paper studies a new latency optimization problem in unmanned aerial vehicles (UAVs)-enabled federated learning (FL) with integrated sensing and communication.
We develop a simple yet efficient iterative algorithm to find a high-quality approximate solution, saving system latency up to 68.54% compared to benchmark schemes.
arXiv Detail & Related papers (2024-11-01T14:25:24Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
Federated learning (FL) involves several devices that collaboratively train a shared model without transferring their local data.
FL reduces the communication overhead, making it a promising learning method in UAV-enhanced wireless networks with scarce energy resources.
Despite the potential, implementing FL in UAV-enhanced networks is challenging, as conventional UAV placement methods that maximize coverage increase the FL delay.
arXiv Detail & Related papers (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z) - Lightwave Power Transfer for Federated Learning-based Wireless Networks [34.434349833489954]
Federated Learning (FL) has been recently presented as a new technique for training shared machine learning models in a distributed manner.
implementing FL in wireless networks may significantly reduce the lifetime of energy-constrained mobile devices.
We propose a novel approach at the physical layer based on the application of lightwave power transfer in the FL-based wireless network.
arXiv Detail & Related papers (2020-04-11T16:27:17Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.