論文の概要: Well Separated Pair Decomposition and power weighted shortest path
metric algorithm fusion
- arxiv url: http://arxiv.org/abs/2103.11216v1
- Date: Sat, 20 Mar 2021 17:38:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:44:33.269878
- Title: Well Separated Pair Decomposition and power weighted shortest path
metric algorithm fusion
- Title(参考訳): 分離されたペア分解とパワー重み付き最短経路距離アルゴリズムの融合
- Authors: Gurpreet S. Kalsi and Steven B. Damelin
- Abstract要約: 私たちは、あるポイントセットで$s$-wellの分離ペアを$mathbbrn$, $n$$$>$$1で計算するアルゴリズムを考えています。
また、ダイクストラのアルゴリズムの置換であるアルゴリズムについても検討し、特定のパワー重み付き最短経路メトリックを用いてk$-nearestの隣人を計算し、$mathbbrn$,$n$$$$$$$$$$で計算する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For $s$ $>$ 0, we consider an algorithm that computes all $s$-well separated
pairs in certain point sets in $\mathbb{R}^{n}$, $n$ $>1$. For an integer $K$
$>1$, we also consider an algorithm that is a permutation of Dijkstra's
algorithm, that computes $K$-nearest neighbors using a certain power weighted
shortest path metric in $\mathbb{R}^{n}$, $n$ $>$ $1$. We describe each
algorithm and their respective dependencies on the input data. We introduce a
way to combine both algorithms into a fused algorithm. Several open problems
are given for future research.
- Abstract(参考訳): $s$$>$ 0 に対して、$\mathbb{R}^{n}$, $n$$$>1$ の特定の点集合におけるすべての $s$-well 分離ペアを計算するアルゴリズムを考える。
整数の$k$$$$>1$の場合、djkstraのアルゴリズムの置換であるアルゴリズムも考慮し、そのアルゴリズムは$k$-nearestの隣人に対して、$\mathbb{r}^{n}$, $n$$$$$$$$ で重み付けされた最短経路メトリックを用いて計算します。
入力データに対する各アルゴリズムとその依存関係について述べる。
両アルゴリズムを融合したアルゴリズムに組み合わせる手法を導入する。
今後の研究にはいくつかの未解決問題がある。
関連論文リスト
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
Jung et al. と Mahabadi et al が導入した個別フェア (p$, $k$) クラスタリング問題に対するスケーラブルなアルゴリズムを提案する。
クラスタリングは、各$xin P$に対して$delta(x)$ of $x$の範囲内で中心となる場合、個別にフェアと呼ばれる。
我々は,従来よりもアルゴリズムがはるかに高速であるだけでなく,低コストのソリューションを生み出すことを実証的に示す。
論文 参考訳(メタデータ) (2024-02-09T19:01:48Z) - Algoritmo de Contagem Qu\^antico Aplicado ao Grafo Bipartido Completo [0.0]
Groverのアルゴリズムは、$O(sqrtN/k)$ stepsを使って$N$要素を持つ、順序のないデータベースで$k$要素を見つけることができる。
この研究は、他のグラフのマーク要素の値$k$を推定するために量子カウントアルゴリズムを使用する問題に取り組む。
論文 参考訳(メタデータ) (2023-12-05T21:15:09Z) - Do you know what q-means? [50.045011844765185]
クラスタリングは、大規模なデータセットを分析する上で最も重要なツールの1つである。
クラスタリングのための"$q$-means"アルゴリズムの改良版を提案する。
また、$Obig(frack2varepsilon2(sqrtkd + log(Nd))big で実行される $varepsilon に対する "dequantized" アルゴリズムも提示する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Quantum Coreset Construction Algorithms for Clustering [15.513270929560088]
我々は、$tildeO(sqrtnkd3/2)$クエリ複雑性を持つ$mathbbRd$で$k$-clusteringのコアセットを見つける量子アルゴリズムを与える。
私たちのコアセットは入力サイズを$n$から$mathrmpoly(kepsilon-1d)$に減らします。
論文 参考訳(メタデータ) (2023-06-05T12:22:46Z) - Distributed Quantum-classical Hybrid Shor's Algorithm [1.7396274240172125]
ショアのアルゴリズムは、ノイズ中間量子時代の最も重要な量子アルゴリズムの1つであると考えられている。
Shorのアルゴリズムに必要なリソースを削減するために、我々は新しい分散量子古典ハイブリッド順序決定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T13:52:05Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - Distributed Shor's algorithm [1.7396274240172125]
ショアのアルゴリズムはピーター・ショアが提唱した最も重要な量子アルゴリズムの1つである。
2つの量子コンピュータを別々に使い、$dfracsr$を$sin0, 1, cdots, r-1$と見積もる。
複数の制御量子ビットを使用する従来のショアのアルゴリズムと比較して、我々のアルゴリズムは、約$dfracL2$ qubitsを減らし、各コンピュータの回路深さを減らしている。
論文 参考訳(メタデータ) (2022-07-13T06:00:03Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。