論文の概要: Quantum Machine Learning with HQC Architectures using non-Classically
Simulable Feature Maps
- arxiv url: http://arxiv.org/abs/2103.11381v1
- Date: Sun, 21 Mar 2021 12:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:13:51.189462
- Title: Quantum Machine Learning with HQC Architectures using non-Classically
Simulable Feature Maps
- Title(参考訳): 非古典的シミュレート可能な特徴マップを用いたHQCアーキテクチャによる量子機械学習
- Authors: Syed Farhan Ahmad, Raghav Rawat and Minal Moharir
- Abstract要約: 本稿では,QSVM(Quantum Support Vector Machines)を応用して,将来,精神的な治療を必要とするかどうかを予測する。
我々は、NISQ HQC Architectures for Quantum Machine Learningが、短期現実世界のアプリケーションで優れたパフォーマンスモデルを作成するために、代替として使用できることを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid Quantum-Classical (HQC) Architectures are used in near-term NISQ
Quantum Computers for solving Quantum Machine Learning problems. The quantum
advantage comes into picture due to the exponential speedup offered over
classical computing. One of the major challenges in implementing such
algorithms is the choice of quantum embeddings and the use of a functionally
correct quantum variational circuit. In this paper, we present an application
of QSVM (Quantum Support Vector Machines) to predict if a person will require
mental health treatment in the tech world in the future using the dataset from
OSMI Mental Health Tech Surveys. We achieve this with non-classically simulable
feature maps and prove that NISQ HQC Architectures for Quantum Machine Learning
can be used alternatively to create good performance models in near-term
real-world applications.
- Abstract(参考訳): ハイブリッド量子古典(HQC)アーキテクチャは、量子機械学習問題を解決するために、NISQ量子コンピュータで使用される。
量子のアドバンテージは、古典的コンピューティングよりも指数関数的なスピードアップによって浮かび上がっています。
このようなアルゴリズムの実装における大きな課題の1つは、量子埋め込みの選択と機能的に正しい量子変分回路の使用である。
本稿では,OSMIメンタルヘルス・テクノロジー・サーベイのデータセットを用いて,将来技術界でメンタルヘルスを求められるかどうかを予測するため,QSVM(Quantum Support Vector Machines)の応用を提案する。
量子機械学習のためのnisq hqcアーキテクチャは、短期的な実世界のアプリケーションで優れたパフォーマンスモデルを作成するために代替として使用できることを証明します。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
本研究では,革新的な分散型量子古典量子アーキテクチャを提案する。
最先端の量子ソフトウェアフレームワークを高性能な古典コンピューティングリソースと統合する。
物質と凝縮物質物理学の量子シミュレーションにおける課題に対処する。
論文 参考訳(メタデータ) (2024-03-09T07:38:45Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Using a quantum computer to solve a real-world problem -- what can be
achieved today? [0.0]
量子コンピューティングは、科学とビジネスの問題の展望に革命をもたらす可能性がある重要な発展技術である。
広範囲にわたる興奮は、フォールトトレラントな量子コンピュータが以前に難解な問題を解く可能性に由来する。
私たちは現在、量子ハードウェアの初期バージョンにより多くの量子アプローチが適用されているいわゆるNISQの時代にあります。
論文 参考訳(メタデータ) (2022-11-23T16:10:53Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search
Framework [0.0]
自動量子機械学習(AutoQML)への第一歩を踏み出す
本稿では,この問題の具体的記述を提案し,その後,古典的量子ハイブリッドクラウドアーキテクチャを開発する。
応用例として、量子生成適応ニューラルネットワーク(qGAN)をトレーニングし、既知の歴史的なデータ分布に従うエネルギー価格を生成する。
論文 参考訳(メタデータ) (2022-02-16T12:37:10Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。