論文の概要: A Federated Learning Framework in Smart Grid: Securing Power Traces in
Collaborative Learning
- arxiv url: http://arxiv.org/abs/2103.11870v1
- Date: Mon, 22 Mar 2021 14:06:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:23:16.708904
- Title: A Federated Learning Framework in Smart Grid: Securing Power Traces in
Collaborative Learning
- Title(参考訳): smart gridにおける連合学習フレームワーク:協調学習におけるパワートレースの確保
- Authors: Haizhou Liu, Xuan Zhang, Hongbin Sun
- Abstract要約: 本稿では,個別の電力トレースを漏らすことなく,消費電力パターンの協調機械学習を実現するスマートグリッドの連合学習フレームワークを提案する。
ケーススタディによると、Paillierのような適切な暗号化方式では、提案されたフレームワークから構築された機械学習モデルは、損失がなく、プライバシーを保ち、効果的である。
- 参考スコア(独自算出の注目度): 7.246377480492976
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the deployment of smart sensors and advancements in communication
technologies, big data analytics have become vastly popular in the smart grid
domain, which inform stakeholders of the best power utilization strategy.
However, these power-related data are typically scattered among different
parties. Direct data sharing might compromise party benefits, individual
privacy and even national security. Inspired by the federated learning scheme
of Google AI, we hereby propose a federated learning framework in smart grid,
which enables collaborative machine learning of power consumption patterns
without leaking individual power traces. Horizontal federated learning is
employed when data are scattered in the sample space; vertical federated
learning, on the other hand, is designed for data scattered in the feature
space. Case studies show that, with proper encryption schemes such as Paillier,
the machine learning models constructed from the proposed framework are
lossless, privacy-preserving and effective.
- Abstract(参考訳): スマートセンサーの配備と通信技術の進歩により、ビッグデータ分析はスマートグリッド分野で広く普及し、利害関係者に最適な電力利用戦略を知らせている。
しかし、これらのパワー関連データは一般的に異なるパーティに分散している。
直接的なデータ共有は、党の利益、個人のプライバシー、さらには国家安全保障を損なう可能性がある。
本稿では,Google AIのフェデレーション学習方式にヒントを得て,個々の電力トレースをリークすることなく,消費電力パターンの協調機械学習を可能にする,スマートグリッドにおけるフェデレーション学習フレームワークを提案する。
水平フェデレーション学習は、データがサンプル空間に散在するときに用いられ、一方、垂直フェデレーション学習は、特徴空間に散在するデータのために設計される。
ケーススタディは、paillierのような適切な暗号化スキームによって、提案されたフレームワークから構築された機械学習モデルは、損失がなく、プライバシーを保護し、効果的であることを示している。
関連論文リスト
- Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
人工知能の台頭は多くの産業に革命をもたらし、社会の働き方を変えた。
異なるエンティティが分散または所有する学習プロセスにおいて、情報を活用することが不可欠である。
現代のデータ駆動サービスは、分散知識エンティティを結果に統合するために開発されています。
論文 参考訳(メタデータ) (2024-02-08T07:18:23Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
今日の世界では、IoTネットワークの急速な拡大とスマートデバイスの普及により、相当量の異種データが生成される。
このデータを効果的に扱うためには、プライバシーと効率の両立を保証するために高度なデータ処理技術が必要である。
フェデレーション学習は、モデルをローカルにトレーニングし、データをプライバシを保存するためにサーバに集約する分散学習手法として登場した。
論文 参考訳(メタデータ) (2023-12-24T00:13:41Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
実世界の機密データに基づく機械学習モデルは、医療スクリーニングから病気の発生、農業、産業、防衛科学など幅広い分野で進歩している。
多くのアプリケーションにおいて、学習参加者のコミュニケーションラウンドは、独自のプライベートデータセットを収集し、実際のデータに対して詳細な機械学習モデルを教え、これらのモデルを使用することの利点を共有することの恩恵を受ける。
既存のプライバシとセキュリティ上の懸念から、ほとんどの人はトレーニング用の機密データ共有を回避している。各ユーザがローカルデータを中央サーバにデモしない限り、フェデレートラーニングは、さまざまなパーティが共用データ上で機械学習アルゴリズムをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2021-11-07T15:14:29Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
分散学習は、分散データとコンピューティングリソースを利用するための効率的なアプローチとして現れる。
本論文では,連合学習システムの機能構造と関連手法の分類法を提案する。
本稿では,flシステムの分散トレーニング,データ通信,セキュリティについて述べる。
論文 参考訳(メタデータ) (2021-04-29T14:15:11Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems [15.796325306292134]
フェデレートラーニング(FL)は、データプライバシを維持しながら、エッジデバイス上で共有モデルの協調トレーニングを可能にする。
様々なパーソナライズされたアプローチが提案されているが、そのようなアプローチはデータ分散の根底にある変化に対処できない。
本稿では,ブロックチェーンとフェデレーション学習に基づく動的に最適化された個人深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-12T02:57:05Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。