論文の概要: SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems
- arxiv url: http://arxiv.org/abs/2103.07050v2
- Date: Wed, 5 Jul 2023 04:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 01:06:11.021771
- Title: SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems
- Title(参考訳): SCEI:IoTシステムのためのスマートコントラクト駆動エッジインテリジェンスフレームワーク
- Authors: Chenhao Xu, Jiaqi Ge, Yong Li, Yao Deng, Longxiang Gao, Mengshi Zhang,
Yong Xiang, Xi Zheng
- Abstract要約: フェデレートラーニング(FL)は、データプライバシを維持しながら、エッジデバイス上で共有モデルの協調トレーニングを可能にする。
様々なパーソナライズされたアプローチが提案されているが、そのようなアプローチはデータ分散の根底にある変化に対処できない。
本稿では,ブロックチェーンとフェデレーション学習に基づく動的に最適化された個人深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 15.796325306292134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables collaborative training of a shared model on
edge devices while maintaining data privacy. FL is effective when dealing with
independent and identically distributed (iid) datasets, but struggles with
non-iid datasets. Various personalized approaches have been proposed, but such
approaches fail to handle underlying shifts in data distribution, such as data
distribution skew commonly observed in real-world scenarios (e.g., driver
behavior in smart transportation systems changing across time and location).
Additionally, trust concerns among unacquainted devices and security concerns
with the centralized aggregator pose additional challenges. To address these
challenges, this paper presents a dynamically optimized personal deep learning
scheme based on blockchain and federated learning. Specifically, the innovative
smart contract implemented in the blockchain allows distributed edge devices to
reach a consensus on the optimal weights of personalized models. Experimental
evaluations using multiple models and real-world datasets demonstrate that the
proposed scheme achieves higher accuracy and faster convergence compared to
traditional federated and personalized learning approaches.
- Abstract(参考訳): federated learning(fl)は、データプライバシを維持しながら、エッジデバイス上の共有モデルの協調トレーニングを可能にする。
flは独立かつ同一分散(iid)データセットを扱う場合に有効であるが、非iidデータセットでは問題となる。
様々なパーソナライズされたアプローチが提案されているが、実際のシナリオ(例えば、時間や場所によって変化するスマートトランスポートシステムにおけるドライバの振る舞い)でよく見られるような、データ分散の根本的な変化には対処できない。
さらに、不明なデバイス間の信頼の懸念や集中型アグリゲータに対するセキュリティの懸念も、新たな課題となっている。
これらの課題に対処するために,ブロックチェーンとフェデレーション学習に基づく動的に最適化された個人深層学習方式を提案する。
具体的には、ブロックチェーンに実装された革新的なスマートコントラクトによって、分散エッジデバイスがパーソナライズされたモデルの最適な重み付けに関するコンセンサスに達することができる。
複数のモデルと実世界のデータセットを用いた実験により,提案手法は従来のフェデレーションとパーソナライズされた学習手法と比較して精度が高く,より高速な収束を実現することが示された。
関連論文リスト
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Concept drift detection and adaptation for federated and continual
learning [55.41644538483948]
スマートデバイスは環境から大量のデータを収集することができる。
このデータは機械学習モデルのトレーニングに適しており、その振る舞いを大幅に改善することができる。
そこで本研究では,Concept-Drift-Aware Federated Averagingと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-27T17:01:58Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z) - Evaluation Framework For Large-scale Federated Learning [10.127616622630514]
フェデレーテッド・ラーニングは、携帯電話などの分散型エッジデバイスが協調して共有予測モデルを学習できるようにするための機械学習環境として提案されている。
本稿では,データセットとモジュール型評価フレームワークを生成するためのアプローチからなる,大規模フェデレーション学習のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-03T15:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。