Nanoscale vector AC magnetometry with a single nitrogen-vacancy center
in diamond
- URL: http://arxiv.org/abs/2103.12044v1
- Date: Mon, 22 Mar 2021 17:48:40 GMT
- Title: Nanoscale vector AC magnetometry with a single nitrogen-vacancy center
in diamond
- Authors: Guoqing Wang, Yi-Xiang Liu, Yuan Zhu, and Paola Cappellaro
- Abstract summary: Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science.
Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity.
We propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field.
- Score: 8.640305033813068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of AC magnetic fields at the nanoscale is critical in applications
ranging from fundamental physics to materials science. Isolated quantum spin
defects, such as the nitrogen-vacancy center in diamond, can achieve the
desired spatial resolution with high sensitivity. Still, vector AC magnetometry
currently relies on using different orientations of an ensemble of sensors,
with degraded spatial resolution, and a protocol based on a single NV is
lacking. Here we propose and experimentally demonstrate a protocol that
exploits a single NV to reconstruct the vectorial components of an AC magnetic
field by tuning a continuous driving to distinct resonance conditions. We map
the spatial distribution of an AC field generated by a copper wire on the
surface of the diamond. The proposed protocol combines high sensitivity, broad
dynamic range, and sensitivity to both coherent and stochastic signals, with
broad applications in condensed matter physics, such as probing spin
fluctuations.
Related papers
- New opportunities in condensed matter physics for nanoscale quantum sensors [0.14993626998062629]
Nitrogen vacancy (NV) centre quantum sensors provide unique opportunities in studying condensed matter systems.
They are quantitative, noninvasive, physically robust, offer nanoscale resolution, and may be used across a wide range of temperatures.
These properties have been exploited in recent years to obtain nanoscale resolution measurements of static magnetic fields.
arXiv Detail & Related papers (2024-03-20T16:13:22Z) - Quantum dynamic response-based NV-diamond magnetometry: Robustness to
decoherence and applications in motion detection of magnetic nanoparticles [5.067521928161945]
We propose a novel quantum sensing protocol that leverages the dynamical response of physical observables to quenches in quantum systems.
Specifically, we use the nitrogen-vacancy color center in diamond to realize both scalar and vector magnetometry via quantum response.
We suggest a method for detecting the motion of magnetic nanoparticles, which is challenging with conventional interference-based sensors.
arXiv Detail & Related papers (2023-07-11T13:44:37Z) - Simulation of ODMR Spectra from Nitrogen-Vacancy Ensembles in Diamond
for Electric Field Sensing [0.0]
We present an open source simulation tool that models the influence of arbitrary electric and magnetic fields on the electronic and nuclear spin states of NV ensembles.
Specifically, the code computes the transition strengths and predicts the sensitivity under shot-noise-limited optically-detected magnetic resonance.
We show that our code can be used to optimize sensitivity in situations where usual arguments based on neglecting terms in the full Hamiltonian would give sub-optimal results.
arXiv Detail & Related papers (2023-01-10T18:16:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Sub-nanotesla Sensitivity at the Nanoscale with a Single Spin [11.230326490436141]
We report that a sensitivity of 0.5 $bfnT/sqrtHz$ at the nanoscale is achieved experimentally by using nitrogen-vacancy defects in diamond.
The achieved sensitivity is substantially enhanced by integrating with multiple quantum techniques.
arXiv Detail & Related papers (2022-05-09T16:42:54Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Vector DC magnetic-field sensing with reference microwave field using
perfectly aligned nitrogen-vacancy centers in diamond [0.0]
We propose a method to measure vector DC magnetic fields using perfectly aligned NV centers without reference DC magnetic fields.
Our method of using a reference microwave field is a novel technique for sensitive vector DC magnetic-field sensing.
arXiv Detail & Related papers (2021-12-01T14:05:10Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.