Quantum dynamic response-based NV-diamond magnetometry: Robustness to
decoherence and applications in motion detection of magnetic nanoparticles
- URL: http://arxiv.org/abs/2307.05255v1
- Date: Tue, 11 Jul 2023 13:44:37 GMT
- Title: Quantum dynamic response-based NV-diamond magnetometry: Robustness to
decoherence and applications in motion detection of magnetic nanoparticles
- Authors: Wenkui Ding, Xingyu Zhang, Jing Liu, and Xiaoguang Wang
- Abstract summary: We propose a novel quantum sensing protocol that leverages the dynamical response of physical observables to quenches in quantum systems.
Specifically, we use the nitrogen-vacancy color center in diamond to realize both scalar and vector magnetometry via quantum response.
We suggest a method for detecting the motion of magnetic nanoparticles, which is challenging with conventional interference-based sensors.
- Score: 5.067521928161945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel quantum sensing protocol that leverages the dynamical
response of physical observables to quenches in quantum systems. Specifically,
we use the nitrogen-vacancy (NV) color center in diamond to realize both scalar
and vector magnetometry via quantum response. Furthermore, we suggest a method
for detecting the motion of magnetic nanoparticles, which is challenging with
conventional interference-based sensors. To achieve this, we derive the closed
exact form of the Berry curvature corresponding to NV centers and design
quenching protocols to extract the Berry curvature via dynamical response. By
constructing and solving non-linear equations, the magnetic field and
instantaneous motion velocity of the magnetic nanoparticle can be deduced. We
investigate the feasibility of our sensing scheme in the presence of
decoherence and show through numerical simulations that it is robust to
decoherence. Intriguingly, we have observed that a vanishing nuclear spin
polarization in diamond actually benefits our dynamic sensing scheme, which
stands in contrast to conventional Ramsey-based schemes. In comparison to
Ramsey-based sensing schemes, our proposed scheme can sense an arbitrary
time-dependent magnetic field, as long as its time dependence is nearly
adiabatic.
Related papers
- Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Simulation of ODMR Spectra from Nitrogen-Vacancy Ensembles in Diamond
for Electric Field Sensing [0.0]
We present an open source simulation tool that models the influence of arbitrary electric and magnetic fields on the electronic and nuclear spin states of NV ensembles.
Specifically, the code computes the transition strengths and predicts the sensitivity under shot-noise-limited optically-detected magnetic resonance.
We show that our code can be used to optimize sensitivity in situations where usual arguments based on neglecting terms in the full Hamiltonian would give sub-optimal results.
arXiv Detail & Related papers (2023-01-10T18:16:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Nanoscale vector AC magnetometry with a single nitrogen-vacancy center
in diamond [8.640305033813068]
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science.
Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity.
We propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field.
arXiv Detail & Related papers (2021-03-22T17:48:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.