論文の概要: Extracting the Unknown from Long Math Problems
- arxiv url: http://arxiv.org/abs/2103.12048v1
- Date: Mon, 22 Mar 2021 17:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 17:16:59.503120
- Title: Extracting the Unknown from Long Math Problems
- Title(参考訳): 長い数学の問題から未知を抽出する
- Authors: Ndapa Nakashole
- Abstract要約: 長い数学問題の仕様における未知の認識タスクを通じて問題理解を容易にする計算手法を提案する。
実験の結果,学習モデルがタスクに対して強い結果をもたらすことが示され,長い数学問題を理解するための人間の解釈可能でモジュール的なアプローチへの第一歩として期待できる。
- 参考スコア(独自算出の注目度): 8.19841678851784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In problem solving, understanding the problem that one seeks to solve is an
essential initial step. In this paper, we propose computational methods for
facilitating problem understanding through the task of recognizing the unknown
in specifications of long Math problems. We focus on the topic of Probability.
Our experimental results show that learning models yield strong results on the
task, a promising first step towards human interpretable, modular approaches to
understanding long Math problems.
- Abstract(参考訳): 問題解決において、解決しようとする問題を理解することは重要な初期ステップである。
本稿では,長い数学問題の仕様における未知の認識作業を通じて問題理解を容易にする計算手法を提案する。
我々は確率の話題に焦点を当てる。
実験の結果,学習モデルがタスクに対して強い結果をもたらすことが示され,長い数学問題を理解するための人間の解釈可能でモジュール的なアプローチへの第一歩として期待できる。
関連論文リスト
- Give me a hint: Can LLMs take a hint to solve math problems? [0.5742190785269342]
本稿では,先進的な数学的問題に対する言語モデルの性能向上のための"ヒント"を提案する。
また、敵のヒントに対する堅牢性をテストし、それらに対する感受性を示す。
論文 参考訳(メタデータ) (2024-10-08T11:09:31Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
本研究では,高品質な数学問題を大規模に合成する手法であるMath CAMPSを提案する。
それぞれの標準を形式文法でエンコードし、様々な記号問題とその解をサンプリングする。
我々は、記号構造からフォローアップ質問を導き、それらをフォローアップ単語問題に変換する。
論文 参考訳(メタデータ) (2024-07-01T01:56:28Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
本稿では,数学的問題表現,すなわち QuesCo に対する対照的な事前学習手法を提案する。
まず、コンテンツレベルと構造レベルを含む2段階の質問強化を設計し、類似した目的で文字通り多様な質問ペアを生成する。
そこで我々は,知識概念の階層的情報を完全に活用するために,知識階層を意識したランク戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T14:23:29Z) - Automatic Generation of Socratic Subquestions for Teaching Math Word
Problems [16.97827669744673]
本稿では,大言語モデル (LM) が数学用語の問題解決を導くためのシーケンシャルな質問を生成する能力について検討する。
自動品質評価と人的品質評価の両方において,所望の質問特性に制約されたLMが優れた質問を生成することがわかった。
その結果,課題の難易度は,質問が人間のパフォーマンスを損なうか否かを判断する上で重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T10:40:22Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - Why are NLP Models Fumbling at Elementary Math? A Survey of Deep
Learning based Word Problem Solvers [7.299537282917047]
単語問題を解くために開発された様々なモデルについて批判的に検討する。
学術的な関心が豊富にあるにもかかわらず、主に使われている実験とデータセットの設計がいまだに停滞している理由を、一歩後退して分析する。
論文 参考訳(メタデータ) (2022-05-31T10:51:25Z) - Towards Tractable Mathematical Reasoning: Challenges, Strategies, and
Opportunities for Solving Math Word Problems [4.309840398782996]
自然言語を用いた数学単語問題の解法として,非神経的・神経的手法を検証した。
これらの手法が一般化可能であり、数学的に合理的であり、解釈可能であり、説明可能であることを強調する。
技術的アプローチについて議論し、MWPを解くための直感的な設計選択の進化を概観し、数学的推論能力について検討する。
論文 参考訳(メタデータ) (2021-10-29T05:20:31Z) - Measuring Mathematical Problem Solving With the MATH Dataset [55.4376028963537]
12,500の競合数学問題のデータセットであるMATHを紹介する。
各問題には、答えの導出と説明を生成するためのモデルを教えるために使用できる完全なステップバイステップソリューションがあります。
また、モデルに数学の基礎を教えるための補助的事前学習データセットも提供します。
論文 参考訳(メタデータ) (2021-03-05T18:59:39Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
循環型アニーリングスケジュールとMMD基準を用いた新しいメタレギュラー化目標を構築した。
実験の結果,本手法は標準的なメタ学習アルゴリズムよりもかなり優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-04T04:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。