論文の概要: Give me a hint: Can LLMs take a hint to solve math problems?
- arxiv url: http://arxiv.org/abs/2410.05915v2
- Date: Sat, 09 Nov 2024 08:32:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:29.368028
- Title: Give me a hint: Can LLMs take a hint to solve math problems?
- Title(参考訳): ヒントをください: LLMは数学の問題を解決するヒントをもらえますか?
- Authors: Vansh Agrawal, Pratham Singla, Amitoj Singh Miglani, Shivank Garg, Ayush Mangal,
- Abstract要約: 本稿では,先進的な数学的問題に対する言語モデルの性能向上のための"ヒント"を提案する。
また、敵のヒントに対する堅牢性をテストし、それらに対する感受性を示す。
- 参考スコア(独自算出の注目度): 0.5742190785269342
- License:
- Abstract: While state-of-the-art LLMs have shown poor logical and basic mathematical reasoning, recent works try to improve their problem-solving abilities using prompting techniques. We propose giving "hints" to improve the language model's performance on advanced mathematical problems, taking inspiration from how humans approach math pedagogically. We also test robustness to adversarial hints and demonstrate their sensitivity to them. We demonstrate the effectiveness of our approach by evaluating various diverse LLMs, presenting them with a broad set of problems of different difficulties and topics from the MATH dataset and comparing against techniques such as one-shot, few-shot, and chain of thought prompting.
- Abstract(参考訳): 最先端のLLMは、論理的および基礎的な数学的推論に乏しいが、最近の研究は、プロンプト技術を用いて問題解決能力を改善しようとしている。
我々は,人間が数学的にどのようにアプローチするかから着想を得て,先進的な数学的問題に対する言語モデルの性能向上のための"ヒント"を提案する。
また、敵のヒントに対する堅牢性をテストし、それらに対する感受性を示す。
我々は,多種多様なLSMを評価し,MATHデータセットの難易度とトピックの多種多様な問題と,ワンショット,少数ショット,思考の連鎖といった手法との比較を行った。
関連論文リスト
- AI-Assisted Generation of Difficult Math Questions [78.7547836422727]
現在の訓練は、数学的推論をコア能力として位置づけている。
多様で挑戦的な数学の質問には、控えめな需要がある。
本稿では,LLMの強みとHuman-in-the-loopアプローチを組み合わせた設計枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:55:36Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
大きな言語モデルの推論能力を改善する効果的な方法として、明確な推論経路を蒸留する手法が登場している。
本稿では, LLM から推論能力を抽出する手法を提案する。
提案実験は,ReasonerがCoderによるプログラム実装をより効果的にガイドできることを示す。
論文 参考訳(メタデータ) (2024-04-11T22:19:50Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
論文 参考訳(メタデータ) (2024-03-21T17:59:50Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMathは、中国語大言語モデル(LLM)を評価するための詳細な数学的評価ベンチマークデータセットである。
FineMathは、小学校数学で教えられる主要な数学的概念をカバーし、数学用語の問題の17のカテゴリに分けられる。
数学の単語問題のうち17のカテゴリは、これらの問題を解決するために必要な推論ステップの数に応じて、難易度を手動でアノテートする。
論文 参考訳(メタデータ) (2024-03-12T15:32:39Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - Learning Multi-Step Reasoning by Solving Arithmetic Tasks [6.398022050054328]
本研究では,比較的小さな言語モデルを多段階推論の能力に組み込む方法について検討する。
我々は,合成データセットMsAT上でLMを継続的に事前学習することにより,そのような能力を注入することを提案する。
提案手法の有効性を示す4つの数学単語問題データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-06-02T17:29:22Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。