論文の概要: Unsupervised collaborative learning based on Optimal Transport theory
- arxiv url: http://arxiv.org/abs/2103.12071v1
- Date: Mon, 22 Mar 2021 17:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 13:43:58.667523
- Title: Unsupervised collaborative learning based on Optimal Transport theory
- Title(参考訳): 最適輸送理論に基づく教師なし協調学習
- Authors: Fatima Ezzahraa Ben Bouazza, Youn\`es Bennani
- Abstract要約: 協調学習は近年,非常に大きな成果を上げている。
交換が必要な情報の種類、停止の基準、適切な協力者を選択する方法など、まだいくつかの問題に苦しんでいます。
本論文では, 最適輸送理論に触発された新たなアプローチにより, コラボレーションの質の向上と課題の解決を目指す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative learning has recently achieved very significant results. It
still suffers, however, from several issues, including the type of information
that needs to be exchanged, the criteria for stopping and how to choose the
right collaborators. We aim in this paper to improve the quality of the
collaboration and to resolve these issues via a novel approach inspired by
Optimal Transport theory. More specifically, the objective function for the
exchange of information is based on the Wasserstein distance, with a
bidirectional transport of information between collaborators. This formulation
allows to learns a stopping criterion and provide a criterion to choose the
best collaborators. Extensive experiments are conducted on multiple data-sets
to evaluate the proposed approach.
- Abstract(参考訳): 協調学習は近年,非常に大きな成果を上げている。
しかし、交換しなければならない情報の種類、停止の基準、適切な協力者を選ぶ方法など、いくつかの問題に苦しんでいる。
本稿では, 最適輸送理論に触発された新しいアプローチにより, コラボレーションの質の向上と課題の解決を目指す。
より具体的には、情報交換の目的関数はワッサーシュタイン距離に基づいており、共同作業者間で情報の双方向輸送を行う。
この定式化は停止基準を学習し、最高の協力者を選ぶための基準を与える。
提案手法を評価するために,複数のデータセット上で広範な実験を行った。
関連論文リスト
- Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning [13.918498667158119]
本稿では,情報選択と暗黙学習に基づく新しい協調型MARLフレームワークを提案する。
我々はゲーティングと選択機構を統合し、エージェントが環境変化に基づいて情報を適応的にフィルタリングできるようにする。
人気のあるMARLベンチマークの実験により、我々のフレームワークは最先端のアルゴリズムとシームレスに統合できることが示された。
論文 参考訳(メタデータ) (2024-12-20T07:55:59Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
複数の目的を同時に最適化することは、レコメンデーションプラットフォームにとって重要なタスクです。
既存の多目的推薦システムは、そのような動的な関係を体系的に考慮していない。
論文 参考訳(メタデータ) (2024-07-04T02:19:49Z) - Collaborative Active Learning in Conditional Trust Environment [1.3846014191157405]
複数の協力者が既存のデータやモデルを開示することなく、組み合わせた機械学習機能を活用して新しいドメインを探索するパラダイムである、協調型アクティブラーニングについて検討する。
このコラボレーションは、(a)直接モデルとデータ開示の必要性を排除し、プライバシとセキュリティの懸念に対処する、(b)直接データ交換なしで異なるデータソースとインサイトの使用を可能にする、(c)共有ラベリングコストを通じてコスト効率とリソース効率を促進する、といういくつかの利点を提供する。
論文 参考訳(メタデータ) (2024-03-27T10:40:27Z) - Collective Counterfactual Explanations via Optimal Transport [3.97478982737167]
本稿では, 対実的説明を定式化するための集合的アプローチを提案する。
我々の問題は、輸送の最適な問題として自然に当てはまる。
本稿では,この手法が古典的対実的説明のデシデラタに対してどのように改善するかを説明する。
論文 参考訳(メタデータ) (2024-02-07T04:39:23Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - UMC: A Unified Bandwidth-efficient and Multi-resolution based
Collaborative Perception Framework [20.713675020714835]
UMCと呼ばれる統一協調認識フレームワークを提案する。
マルチレゾリューション技術を用いて,コミュニケーション,コラボレーション,再構築プロセスの最適化を図っている。
実験の結果,提案したUTCは,最先端の協調認識手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2023-03-22T09:09:02Z) - Assisting Human Decisions in Document Matching [52.79491990823573]
我々は,意思決定者のパフォーマンスを向上する支援情報の種類を評価するためのプロキシマッチングタスクを考案した。
ブラックボックスモデルによる説明を提供することで,マッチング作業におけるユーザの精度が低下することが判明した。
一方,タスク固有のデシラタに密接に対応するように設計されたカスタムメソッドは,ユーザのパフォーマンス向上に有効であることが判明した。
論文 参考訳(メタデータ) (2023-02-16T17:45:20Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
文脈的意思決定の評価と改善のためのデータ収集のためのモデルに依存しないフレームワークを提案する。
過去の治療課題の後悔をデータ効率で評価するために,本手法を用いた。
論文 参考訳(メタデータ) (2022-07-12T01:20:11Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
本稿では,Pareto Optimalityの観点から,符号化言語情報とタスクパフォーマンスの動的関係について検討する。
我々は、機械翻訳と言語モデリングという2つの一般的なNLPタスクの実験を行い、様々な言語情報とタスクパフォーマンスの関係について検討する。
実験結果から,NLPタスクには構文情報が有用であるのに対して,より構文情報の符号化が必ずしも優れたパフォーマンスをもたらすとは限らないことが示唆された。
論文 参考訳(メタデータ) (2022-03-29T19:03:10Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Learning to Recover Reasoning Chains for Multi-Hop Question Answering
via Cooperative Games [66.98855910291292]
本稿では,弱い教師付き信号から推論連鎖を復元する学習法を提案する。
証拠通路をどのように選択し、どのように選択された通路を接続するかを2つのモデルで処理する。
評価のために、2つのマルチホップQAデータセットに基づいたベンチマークを作成しました。
論文 参考訳(メタデータ) (2020-04-06T03:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。