論文の概要: Exploring Federated Unlearning: Analysis, Comparison, and Insights
- arxiv url: http://arxiv.org/abs/2310.19218v4
- Date: Tue, 07 Jan 2025 16:31:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:47:13.553170
- Title: Exploring Federated Unlearning: Analysis, Comparison, and Insights
- Title(参考訳): フェデレーション・アンラーニングの探求 - 分析、比較、洞察
- Authors: Yang Zhao, Jiaxi Yang, Yiling Tao, Lixu Wang, Xiaoxiao Li, Dusit Niyato, H. Vincent Poor,
- Abstract要約: フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
- 参考スコア(独自算出の注目度): 101.64910079905566
- License:
- Abstract: The increasing demand for privacy-preserving machine learning has spurred interest in federated unlearning, which enables the selective removal of data from models trained in federated systems. However, developing federated unlearning methods presents challenges, particularly in balancing three often conflicting objectives: privacy, accuracy, and efficiency. This paper provides a comprehensive analysis of existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy. We discuss key trade-offs among these dimensions and highlight their implications for practical applications across various domains. Additionally, we propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods, incorporating classic baselines and diverse performance metrics. Our findings aim to guide practitioners in navigating the complex interplay of these objectives, offering insights to achieve effective and efficient federated unlearning. Finally, we outline directions for future research to further advance the state of federated unlearning techniques.
- Abstract(参考訳): プライバシ保護機械学習の需要の増加は、フェデレートされたアンラーニングへの関心を喚起し、フェデレーションされたシステムでトレーニングされたモデルからデータを選択的に除去することを可能にする。
しかしながら、フェデレートされたアンラーニング手法の開発は、特にプライバシー、正確性、効率性の3つの相反する目標のバランスをとる上で、課題を提示している。
本稿では,既存のフェデレーション・アンラーニング手法を包括的に分析し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
これらの領域における重要なトレードオフについて論じ、様々な領域にわたる実践的応用にその意味を強調した。
さらに,従来のベースラインと多様なパフォーマンス指標を取り入れた,フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
本研究の目的は、実践者がこれらの目的の複雑な相互作用をナビゲートし、効果的かつ効率的なフェデレーション・アンラーニングを実現するための洞察を提供することである。
最後に,今後の研究の方向性について概説する。
関連論文リスト
- Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
フェデレーション・ファンデーション・モデル(Federated Foundation Models、FedFM)は、フェデレーション・モデルの一般的な能力とフェデレーション・ラーニングのプライバシー保護能力を融合させる分散学習パラダイムである。
本稿では,FedFMに固有の10の課題について,基礎理論,プライベートデータの利用,継続学習,非学習,非IIDおよびグラフデータ,双方向知識伝達,インセンティブ機構設計,ゲーム機構設計,モデル透かし,効率を包括的に要約する。
論文 参考訳(メタデータ) (2025-02-14T04:01:15Z) - Concurrent vertical and horizontal federated learning with fuzzy cognitive maps [1.104960878651584]
本研究ではファジィ認知地図を用いた新しいフェデレーション学習フレームワークを提案する。
多様なデータ分散と非識別分散機能によって引き起こされる課題を包括的に解決するように設計されている。
その結果,プライバシと機密性の基準を維持しつつ,望ましい学習結果を達成するためのアプローチの有効性が示された。
論文 参考訳(メタデータ) (2024-12-17T12:11:14Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Exploring Machine Learning Models for Federated Learning: A Review of
Approaches, Performance, and Limitations [1.1060425537315088]
フェデレートラーニング(Federated Learning)は、個人のデータのプライバシを保護するために強化された分散学習フレームワークである。
危機時には、リアルタイムな意思決定が重要である場合、フェデレートされた学習は、機密データを共有せずに複数のエンティティをまとめて機能させることができる。
本稿では,ここ数年のプライバシ保護機械学習に関する文献を体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-17T19:23:21Z) - When Decentralized Optimization Meets Federated Learning [41.58479981773202]
フェデレーション学習は、分散データから知識を抽出するための新しい学習パラダイムである。
既存のフェデレートされた学習アプローチのほとんどは、単一ポイントの障害に対して脆弱な集中的な設定に集中しています。
この問題に対処する別の戦略は、分散化された通信トポロジである。
論文 参考訳(メタデータ) (2023-06-05T03:51:14Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。