Partitioned hybrid learning of Bayesian network structures
- URL: http://arxiv.org/abs/2103.12188v1
- Date: Mon, 22 Mar 2021 21:34:52 GMT
- Title: Partitioned hybrid learning of Bayesian network structures
- Authors: Jireh Huang and Qing Zhou
- Abstract summary: We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS)
Our empirical results demonstrate the superior empirical performance of pHGS against many state-of-the-art structure learning algorithms.
- Score: 6.683105697884667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel hybrid method for Bayesian network structure learning
called partitioned hybrid greedy search (pHGS), composed of three distinct yet
compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning
via a divide-and-conquer strategy, $p$-value adjacency thresholding (PATH)
effectively accomplishes parameter tuning with a single execution, and hybrid
greedy initialization (HGI) maximally utilizes constraint-based information to
obtain a high-scoring and well-performing initial graph for greedy search. We
establish structure learning consistency of our algorithms in the large-sample
limit, and empirically validate our methods individually and collectively
through extensive numerical comparisons. The combined merits of pPC and PATH
achieve significant computational reductions compared to the PC algorithm
without sacrificing the accuracy of estimated structures, and our generally
applicable HGI strategy reliably improves the estimation structural accuracy of
popular hybrid algorithms with negligible additional computational expense. Our
empirical results demonstrate the superior empirical performance of pHGS
against many state-of-the-art structure learning algorithms.
Related papers
- PP-GWAS: Privacy Preserving Multi-Site Genome-wide Association Studies [2.516577526761521]
We present a novel algorithm PP-GWAS designed to improve upon existing standards in terms of computational efficiency and scalability without sacrificing data privacy.
Experimental evaluation with real world and synthetic data indicates that PP-GWAS can achieve computational speeds twice as fast as similar state-of-the-art algorithms.
We have assessed its performance using various datasets, emphasizing its potential in facilitating more efficient and private genomic analyses.
arXiv Detail & Related papers (2024-10-10T17:07:57Z) - Component-based Sketching for Deep ReLU Nets [55.404661149594375]
We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
arXiv Detail & Related papers (2024-09-21T15:30:43Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Optimal estimation of Gaussian (poly)trees [25.02920605955238]
We consider both problems of distribution learning (i.e. in KL distance) and structure learning (i.e. exact recovery)
The first approach is based on the Chow-Liu algorithm, and learns an optimal tree-structured distribution efficiently.
The second approach is a modification of the PC algorithm for polytrees that uses partial correlation as a conditional independence tester for constraint-based structure learning.
arXiv Detail & Related papers (2024-02-09T12:58:36Z) - Faster Adaptive Momentum-Based Federated Methods for Distributed
Composition Optimization [14.579475552088692]
We propose a class of faster federated composition optimization algorithms (i.e. MFCGD and AdaMFCGD) to solve the non distributed composition problems.
In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-03T15:17:04Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - An Improved Reinforcement Learning Algorithm for Learning to Branch [12.27934038849211]
Branch-and-bound (B&B) is a general and widely used method for optimization.
In this paper, we propose a novel reinforcement learning-based B&B algorithm.
We evaluate the performance of the proposed algorithm over three public research benchmarks.
arXiv Detail & Related papers (2022-01-17T04:50:11Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
Bilevel optimization (BO) has arisen as a powerful tool for solving many modern machine learning problems.
Existing gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations.
We propose a novel BO algorithm, which adopts Evolution Strategies (ES) based method to approximate the response Jacobian matrix in the hypergradient of BO.
arXiv Detail & Related papers (2021-10-13T19:36:50Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget.
We formulate predictor-based architecture search as learning to rank with pairwise comparisons.
The resulting method - RANK-NOSH, reduces the search budget by 5x while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.
arXiv Detail & Related papers (2021-08-18T07:45:21Z) - Cautiously Optimistic Policy Optimization and Exploration with Linear
Function Approximation [48.744735294559824]
Policy optimization methods are popular reinforcement learning algorithms, because their incremental and on-policy nature makes them more stable than the value-based counterparts.
In this paper, we propose a new algorithm, COPOE, that overcomes the sample complexity issue of PCPG while retaining its robustness to model misspecification.
The result is an improvement in sample complexity from $widetildeO (1/epsilon11)$ for PCPG to $widetildeO (1/epsilon3)$ for PCPG, nearly bridging the gap with value-based techniques.
arXiv Detail & Related papers (2021-03-24T01:42:59Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.