論文の概要: Improved Detection of Face Presentation Attacks Using Image
Decomposition
- arxiv url: http://arxiv.org/abs/2103.12201v1
- Date: Mon, 22 Mar 2021 22:15:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 03:53:07.979361
- Title: Improved Detection of Face Presentation Attacks Using Image
Decomposition
- Title(参考訳): 画像分解による顔提示攻撃の検出の改善
- Authors: Shlok Kumar Mishra and Kuntal Sengupta and Max Horowitz-Gelb and
Wen-Sheng Chu and Sofien Bouaziz and David Jacobs
- Abstract要約: プレゼンテーション攻撃検出(PAD)は、安全な顔認証の重要なコンポーネントです。
本研究では,被写体の写真から発生する顔のスプーフを実写画像と区別するPADアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.883919370014
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Presentation attack detection (PAD) is a critical component in secure face
authentication. We present a PAD algorithm to distinguish face spoofs generated
by a photograph of a subject from live images. Our method uses an image
decomposition network to extract albedo and normal. The domain gap between the
real and spoof face images leads to easily identifiable differences, especially
between the recovered albedo maps. We enhance this domain gap by retraining
existing methods using supervised contrastive loss. We present empirical and
theoretical analysis that demonstrates that the contrast and lighting effects
can play a significant role in PAD; these show up particularly in the recovered
albedo. Finally, we demonstrate that by combining all of these methods we
achieve state-of-the-art results on datasets such as CelebA-Spoof, OULU and
CASIA-SURF.
- Abstract(参考訳): プレゼンテーション攻撃検出(PAD)は、セキュアな顔認証において重要な要素である。
本研究では,被写体の写真から生成された顔のスプーフを識別するPADアルゴリズムを提案する。
本手法では,画像分解ネットワークを用いてアルベドとノーマルを抽出する。
実顔画像とspoof顔画像の領域ギャップは、特に回収されたアルベド地図の間で、容易に識別できる差をもたらす。
本研究では,教師付きコントラスト損失を用いた既存手法の再訓練により,この領域間隙を増大させる。
コントラスト効果と照明効果がパッドにおいて重要な役割を果たすことを実証する実証的・理論的解析を行い,特にアルベドに現れる。
最後に,これらすべての手法を組み合わせることで,celeba-spoof,oulu,casia-surfなどのデータセット上で最先端の結果が得られることを示す。
関連論文リスト
- DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - Modeling Spoof Noise by De-spoofing Diffusion and its Application in
Face Anti-spoofing [40.82039387208269]
本稿では,拡散モデルを用いてスプーフ画像をデノベートし,真の画像を復元する先駆的な試みを提案する。
これら2つの画像の違いはスプーフノイズと見なされ、顔の反スプーフに対する識別的手がかりとして機能する。
論文 参考訳(メタデータ) (2024-01-16T10:54:37Z) - Building an Invisible Shield for Your Portrait against Deepfakes [34.65356811439098]
本稿では,画像のプロアクティブな保護を目的とした新しいフレームワーク,Integity Encryptorを提案する。
提案手法では,重要な顔属性と密接な関係を持つメッセージを,秘密に符号化する。
修正された顔属性は、デコードされたメッセージの比較を通じて、操作された画像を検出する手段として機能する。
論文 参考訳(メタデータ) (2023-05-22T10:01:28Z) - Learning Facial Liveness Representation for Domain Generalized Face
Anti-spoofing [25.07432145233952]
Face Anti-Spoofing (FAS) は、顔のスプーフ攻撃と本物とを区別することを目的としている。
スプーフ攻撃の種類が事前に知られていると仮定するのは現実的ではない。
本稿では、前述のドメイン一般化顔偽造防止タスクに対処する深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-08-16T16:13:24Z) - LTT-GAN: Looking Through Turbulence by Inverting GANs [86.25869403782957]
本稿では,よく訓練されたGANによってカプセル化された視覚的事前情報を利用した最初の乱流緩和手法を提案する。
視覚的先行性に基づき、周期的な文脈距離で復元された画像の同一性を維持することを学ぶことを提案する。
本手法は, 回復した結果の視覚的品質と顔認証精度の両方において, 先行技術よりも優れていた。
論文 参考訳(メタデータ) (2021-12-04T16:42:13Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Unsupervised Compound Domain Adaptation for Face Anti-Spoofing [74.6122128643823]
顔認証システムを実環境で堅牢化することを目的とした顔認証対策の課題に対処します。
ソースモデルを対象ドメインに適応させるメモリ拡張手法を,ドメインに意識して提案する。
提案手法は,複数の新しいスプーフ型からなる複合ターゲットドメインに適応する。
論文 参考訳(メタデータ) (2021-05-18T12:08:07Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - Face Anti-Spoofing Via Disentangled Representation Learning [90.90512800361742]
顔認識システムのセキュリティには、顔の偽造が不可欠だ。
本稿では,画像から生意気な特徴やコンテンツの特徴を乱す顔のアンチ・スプーフィングの新たな視点を提案する。
論文 参考訳(メタデータ) (2020-08-19T03:54:23Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
顔の偽造は生体認証アプリケーションにおけるセキュリティ侵害を防ぐ鍵となる。
RGBと赤外線画像を用いたディープラーニング手法は,新たな攻撃に対する大量のトレーニングデータを必要とする。
本研究では,実顔の偏光画像の物理的特徴を自動的に学習することにより,現実のシナリオにおける顔のアンチ・スプーフィング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T03:04:03Z) - Detecting Patch Adversarial Attacks with Image Residuals [9.169947558498535]
識別器は、クリーンサンプルと逆サンプルを区別するために訓練される。
得られた残基が敵攻撃のデジタル指紋として機能することを示す。
その結果,提案手法は従来見つからなかった,より強力な攻撃に対して一般化可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-28T01:28:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。