ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning
- URL: http://arxiv.org/abs/2103.12216v1
- Date: Mon, 22 Mar 2021 22:43:20 GMT
- Title: ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning
- Authors: Mozhgan PourKeshavarz, Mohammad Sabokrou
- Abstract summary: We propose an on-call transfer set to provide past experiences whenever a new class arises in the data stream.
ZS-IL demonstrates significantly better performance on the well-known datasets (CIFAR-10, Tiny-ImageNet) in both Task-IL and Class-IL settings.
- Score: 9.530976792843495
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Classical deep neural networks are limited in their ability to learn from
emerging streams of training data. When trained sequentially on new or evolving
tasks, their performance degrades sharply, making them inappropriate in
real-world use cases. Existing methods tackle it by either storing old data
samples or only updating a parameter set of DNNs, which, however, demands a
large memory budget or spoils the flexibility of models to learn the
incremented class distribution. In this paper, we shed light on an on-call
transfer set to provide past experiences whenever a new class arises in the
data stream. In particular, we propose a Zero-Shot Incremental Learning not
only to replay past experiences the model has learned but also to perform this
in a zero-shot manner. Towards this end, we introduced a memory recovery
paradigm in which we query the network to synthesize past exemplars whenever a
new task (class) emerges. Thus, our method needs no fixed-sized memory, besides
calls the proposed memory recovery paradigm to provide past exemplars, named a
transfer set in order to mitigate catastrophically forgetting the former
classes. Moreover, in contrast with recently proposed methods, the suggested
paradigm does not desire a parallel architecture since it only relies on the
learner network. Compared to the state-of-the-art data techniques without
buffering past data samples, ZS-IL demonstrates significantly better
performance on the well-known datasets (CIFAR-10, Tiny-ImageNet) in both
Task-IL and Class-IL settings.
Related papers
- CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learning [34.59310641291726]
In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge.
We propose a new architecture, named continual expansion and absorption transformer(CEAT)
The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters.
To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space.
arXiv Detail & Related papers (2024-03-11T12:40:12Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - New Insights on Reducing Abrupt Representation Change in Online
Continual Learning [69.05515249097208]
We focus on the change in representations of observed data that arises when previously unobserved classes appear in the incoming data stream.
We show that applying Experience Replay causes the newly added classes' representations to overlap significantly with the previous classes.
We propose a new method which mitigates this issue by shielding the learned representations from drastic adaptation to accommodate new classes.
arXiv Detail & Related papers (2022-03-08T01:37:00Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Representation Memorization for Fast Learning New Knowledge without
Forgetting [36.55736909586313]
The ability to quickly learn new knowledge is a big step towards human-level intelligence.
We consider scenarios that require learning new classes or data distributions quickly and incrementally over time.
We propose "Memory-based Hebbian Adaptation" to tackle the two major challenges.
arXiv Detail & Related papers (2021-08-28T07:54:53Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
We study the continual learning process through the lens of information theory.
We propose Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters.
BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
arXiv Detail & Related papers (2021-05-10T15:09:01Z) - ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations [9.530976792843495]
Class Incremental Learning (CIL) tends to learn new concepts perfectly, but not at the expense of performance and accuracy for old data.
ClaRe is an efficient solution for CIL by remembering the representations of learned classes in each increment.
ClaRe has a better generalization than prior methods thanks to producing diverse instances from the distribution of previously learned classes.
arXiv Detail & Related papers (2021-03-29T10:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.