論文の概要: Anomaly detection using principles of human perception
- arxiv url: http://arxiv.org/abs/2103.12323v1
- Date: Tue, 23 Mar 2021 05:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 01:56:09.180365
- Title: Anomaly detection using principles of human perception
- Title(参考訳): 人間の知覚原理を用いた異常検出
- Authors: Nassir Mohammad
- Abstract要約: 簡易かつリアルタイムかつパラメータフリーな教師なし異常検出アルゴリズムを開発した。
考えは、異常は、データの大半によって行われた特定のグループに関して予期しない観察であると仮定することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the fields of statistics and unsupervised machine learning a fundamental
and well-studied problem is anomaly detection. Although anomalies are difficult
to define, many algorithms have been proposed. Underlying the approaches is the
nebulous understanding that anomalies are rare, unusual or inconsistent with
the majority of data. The present work gives a philosophical approach to
clearly define anomalies and to develop an algorithm for their efficient
detection with minimal user intervention. Inspired by the Gestalt School of
Psychology and the Helmholtz principle of human perception, the idea is to
assume anomalies are observations that are unexpected to occur with respect to
certain groupings made by the majority of the data. Thus, under appropriate
random variable modelling anomalies are directly found in a set of data under a
uniform and independent random assumption of the distribution of constituent
elements of the observations; anomalies correspond to those observations where
the expectation of occurrence of the elements in a given view is $<1$. Starting
from fundamental principles of human perception an unsupervised anomaly
detection algorithm is developed that is simple, real-time and parameter-free.
Experiments suggest it as the prime choice for univariate data and it shows
promising performance on the detection of global anomalies in multivariate
data.
- Abstract(参考訳): 統計学と教師なし機械学習の分野において、基本的なよく研究された問題は異常検出である。
異常は定義が難しいが、多くのアルゴリズムが提案されている。
アプローチの根底にあるのは、異常はまれであり、異常であり、データの大半と矛盾しているという誤った理解である。
本研究は, ユーザの介入を最小限に抑えて, 異常を明確に定義し, 効率的な検出アルゴリズムを開発するための哲学的アプローチを提供する。
Gestalt School of PsychologyとHelmholtzの人間の知覚原理に触発されたこの考え方は、異常がデータの大部分によって作られた特定のグループ化に関して予期しない観察であると仮定することである。
したがって、適切な確率変数モデリング異常は、観測を構成する要素の分布を一様かつ独立的に仮定した一連のデータに直接見出され、あるビューにおける要素の発生の期待が$<1$であるような観測に対応する。
人間の知覚の基本原理から、単純でリアルタイムでパラメータフリーな教師なし異常検出アルゴリズムを開発した。
実験結果から,多変量データのグローバル異常検出における有望な性能を示す。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - Variation and generality in encoding of syntactic anomaly information in
sentence embeddings [7.132368785057315]
文中の異常が発生する階層レベルが異なる探索タスクを設計することにより、異常符号化の微妙な相違について検討する。
我々は、与えられた異常を検出するモデルだけでなく、検出された異常信号の一般性もテストする。
その結果、全てのモデルが異常検出をサポートする情報を符号化しているが、検出性能は異常毎に異なることが示唆された。
論文 参考訳(メタデータ) (2021-11-12T10:23:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。