論文の概要: Discovering Emotion and Reasoning its Flip in Multi-Party Conversations
using Masked Memory Network and Transformer
- arxiv url: http://arxiv.org/abs/2103.12360v1
- Date: Tue, 23 Mar 2021 07:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 14:00:05.383698
- Title: Discovering Emotion and Reasoning its Flip in Multi-Party Conversations
using Masked Memory Network and Transformer
- Title(参考訳): Masked Memory Network と Transformer を用いた多人数会話における感情の発見とフリップの推論
- Authors: Shivani Kumar, Anubhav Shrimal, Md Shad Akhtar, Tanmoy Chakraborty
- Abstract要約: 感情フリップ推論(EFR)の新たな課題について紹介する。
EFRは、ある時点で感情状態が反転した過去の発話を特定することを目的としている。
後者のタスクに対して,前者およびトランスフォーマーベースのネットワークに対処するためのマスクメモリネットワークを提案する。
- 参考スコア(独自算出の注目度): 16.224961520924115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient discovery of emotion states of speakers in a multi-party
conversation is highly important to design human-like conversational agents.
During the conversation, the cognitive state of a speaker often alters due to
certain past utterances, which may lead to a flip in her emotion state.
Therefore, discovering the reasons (triggers) behind one's emotion flip during
conversation is important to explain the emotion labels of individual
utterances. In this paper, along with addressing the task of emotion
recognition in conversations (ERC), we introduce a novel task -- Emotion Flip
Reasoning (EFR) that aims to identify past utterances which have triggered
one's emotion state to flip at a certain time. We propose a masked memory
network to address the former and a Transformer-based network for the latter
task. To this end, we consider MELD, a benchmark emotion recognition dataset in
multi-party conversations for the task of ERC and augment it with new
ground-truth labels for EFR. An extensive comparison with four state-of-the-art
models suggests improved performances of our models for both the tasks. We
further present anecdotal evidences and both qualitative and quantitative error
analyses to support the superiority of our models compared to the baselines.
- Abstract(参考訳): 多人数会話における話者の感情状態の効率的な発見は、人間のような会話エージェントを設計する上で非常に重要である。
会話中、話者の認知状態はしばしば過去の発話によって変化し、それが彼女の感情状態のフリップにつながる可能性がある。
したがって、会話中の感情のフリップの背後にある理由(トリガー)を発見することは、個々の発話の感情ラベルを説明する上で重要である。
本稿では,会話における感情認識(ERC)の課題に対処すると共に,感情状態が一定時間反転した過去の発話を識別することを目的とした,感情フリップ推論(EFR)という新たなタスクを導入する。
本稿では,前者に対応するマスク付きメモリネットワークと後者のタスクのためのトランスフォーマーベースネットワークを提案する。
この目的のために,マルチパーティ会話における感情認識のベンチマークデータセットであるMELDについて検討し,ERFのための新たな基盤構造ラベルを付加した。
4つの最先端モデルとの比較により,両タスクのモデルの性能改善が示唆された。
さらに,ベースラインと比較してモデルの優越性を支持するために,逸話的証拠と定性的および定量的な誤り解析を提示する。
関連論文リスト
- SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - Emotion Flip Reasoning in Multiparty Conversations [27.884015521888458]
Instigator based Emotion Flip Reasoning (EFR) は、会話の中で話者の感情のフリップの背後にある侵入者を特定することを目的としている。
本報告では,感情心理学に則った基盤構造ERFインスティゲータラベルを含むデータセットであるMELD-Iについて述べる。
我々は,TransformerエンコーダとスタックGRUを利用して対話コンテキストをキャプチャする,TGIFと呼ばれる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-24T13:22:02Z) - Mimicking the Thinking Process for Emotion Recognition in Conversation
with Prompts and Paraphrasing [26.043447749659478]
複雑な因子をモデル化する際の思考過程を模倣する新しい枠組みを提案する。
我々はまず,会話のコンテキストを履歴指向のプロンプトで理解し,対象発話の前者からの情報を選択的に収集する。
次に、話者の背景を経験指向のプロンプトでモデル化し、すべての会話から類似した発話を検索する。
論文 参考訳(メタデータ) (2023-06-11T06:36:19Z) - Beyond Isolated Utterances: Conversational Emotion Recognition [33.52961239281893]
音声の感情認識は、発話の記録から話者の感情状態を認識するタスクである。
本稿では,対話型感情認識(CER)をシーケンスラベリングタスクとして扱うことで,対話型感情認識(CER)にいくつかのアプローチを提案する。
CERのトランスフォーマーアーキテクチャについて検討し,ResNet-34およびBiLSTMアーキテクチャと比較した。
論文 参考訳(メタデータ) (2021-09-13T16:40:35Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z) - AdCOFE: Advanced Contextual Feature Extraction in Conversations for
emotion classification [0.29360071145551075]
提案したAdCOFE(Advanced Contextual Feature extract)モデルはこれらの問題に対処する。
会話データセットにおける感情認識の実験は、AdCOFEが会話中の感情のキャプチャに有益であることを示しています。
論文 参考訳(メタデータ) (2021-04-09T17:58:19Z) - Seen and Unseen emotional style transfer for voice conversion with a new
emotional speech dataset [84.53659233967225]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、音声中の感情的韻律を変換することを目的としている。
可変自動符号化ワッサーシュタイン生成対向ネットワーク(VAW-GAN)に基づく新しいフレームワークを提案する。
提案するフレームワークは,ベースラインフレームワークを一貫して上回り,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-10-28T07:16:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。