論文の概要: Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation
- arxiv url: http://arxiv.org/abs/2504.18087v1
- Date: Fri, 25 Apr 2025 05:28:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.652926
- Title: Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation
- Title(参考訳): 距離のあるアイデンティティと協調的感情:相関性を考慮した感情的トーキング・ポートレート生成
- Authors: Weipeng Tan, Chuming Lin, Chengming Xu, FeiFan Xu, Xiaobin Hu, Xiaozhong Ji, Junwei Zhu, Chengjie Wang, Yanwei Fu,
- Abstract要約: DICE-Talkは、感情と同一性を切り離し、類似した特徴を持つ感情を協調するフレームワークである。
我々は、モーダル・アテンションを通して、音声と視覚の感情の手がかりを共同でモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化感情調和モジュールを提案する。
第3に、拡散過程における感情の一貫性を強制する感情識別目標を設計する。
- 参考スコア(独自算出の注目度): 63.94836524433559
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities.
- Abstract(参考訳): 近年のトーキング・ヘッド・ジェネレーション (THG) の進歩は, 拡散モデルによる印象的な唇の同期と視覚的品質を実現しているが, 既存の手法では, 話者のアイデンティティを保ちながら感情的に表現的な肖像画を生成するのに苦労している。
音声の感情的手がかりの不十分な活用,感情表現におけるアイデンティティの漏洩,感情相関の分離学習の3つの重要な限界を同定した。
これらの課題に対処するため,DICE-Talkと呼ばれる新しい枠組みを提案する。
まず,感情を同一性に依存しないガウス分布として表現し,音声と視覚の感情的手がかりを協調的にモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化型感情調和モジュールを提案する。
第3に、潜時空間分類による拡散過程における感情の一貫性を強制する感情識別目標を設計する。
MEADとHDTFデータセットの大規模な実験は、我々の方法の優位性を示し、競合するリップシンク性能を維持しながら、感情の正確さにおける最先端のアプローチよりも優れていた。
質的な結果とユーザスタディにより、未確認のアイデンティティに自然に適応するリッチで相関性のある感情表現を持つアイデンティティ保存肖像画を生成する能力がさらに確認された。
関連論文リスト
- GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations [35.63053777817013]
GatedxLSTMは、会話におけるマルチモーダル感情認識(ERC)モデルである。
話者と会話相手の双方の声と書き起こしを考慮し、感情的なシフトを駆動する最も影響力のある文章を特定する。
4クラスの感情分類において,オープンソース手法間でのSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2025-03-26T18:46:18Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
本研究では、視線追跡データ、時間的ダイナミクス、性格特性を統合することで、知覚と知覚の両方の感情の検出を大幅に向上させる方法について述べる。
本研究は,将来の情緒コンピューティングと人間エージェントシステムの設計を示唆するものである。
論文 参考訳(メタデータ) (2025-03-18T13:15:32Z) - Dual-path Collaborative Generation Network for Emotional Video Captioning [33.230028098522254]
感情的ビデオキャプション(Emotional Video Captioning)は、ビデオで表現される本質的な感情で事実的コンテンツを記述することを目的とした、新たなタスクである。
既存の感情的ビデオキャプション手法は、最初は世界的視覚的感情的手がかりを認識し、ビデオ機能と組み合わせて感情的キャプション生成を導く。
本稿では、感情的なキャプションを生成しながら、動的に視覚的な感情的手がかりを知覚するデュアルパス協調生成ネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-06T07:30:53Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。