論文の概要: Balanced Softmax Cross-Entropy for Incremental Learning
- arxiv url: http://arxiv.org/abs/2103.12532v1
- Date: Tue, 23 Mar 2021 13:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 14:05:06.671469
- Title: Balanced Softmax Cross-Entropy for Incremental Learning
- Title(参考訳): インクリメンタル学習のためのバランスのとれたソフトマックスクロスエントロピー
- Authors: Quentin Jodelet, Xin Liu and Tsuyoshi Murata
- Abstract要約: ディープニューラルネットワークは、新しいクラスや新しいタスクで段階的に訓練されると壊滅的な忘れがちです。
近年の手法は破滅的な忘れを緩和するのに有効であることが証明されている。
本稿では,バランスの取れたソフトマックスクロスエントロピー損失の利用を提案し,それとインクリメンタル学習のための離脱法を組み合わせることで,パフォーマンスを向上させることができることを示す。
- 参考スコア(独自算出の注目度): 6.5423218639215275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are prone to catastrophic forgetting when incrementally
trained on new classes or new tasks as adaptation to the new data leads to a
drastic decrease of the performance on the old classes and tasks. By using a
small memory for rehearsal and knowledge distillation, recent methods has
proven to be effective to mitigate catastrophic forgetting. However due to the
limited size of the memory, large imbalance between the amount of data
available for the old and new classes still remains which results in a
deterioration of the overall accuracy of the model. To address this problem, we
propose the use of the Balanced Softmax Cross-Entropy loss and show that it can
be combined with exiting methods for incremental learning to improve their
performances while also decreasing the computational cost of the training
procedure in some cases. Complete experiments on the competitive ImageNet,
subImageNet and CIFAR100 datasets show states-of-the-art results.
- Abstract(参考訳): ディープニューラルネットワークは、新しいデータへの適応として新しいクラスや新しいタスクを漸進的にトレーニングした場合に壊滅的な忘れがちになり、古いクラスやタスクのパフォーマンスが大幅に低下する。
リハーサルと知識の蒸留に小さなメモリを使用することで、破滅的な忘れを軽減できることが証明されている。
しかし、メモリサイズが限られているため、古いクラスと新しいクラスで利用可能なデータ量との間に大きな不均衡が残っているため、モデルの全体的な精度は低下する。
この問題に対処するために,バランスド・ソフトマックス・クロス・エントロピー・ロス(英語版)を用いることを提案し,段階的学習の終了法と組み合わせて性能を向上させるとともに,訓練手順の計算コストを低減できることを示す。
競合するImageNet、subImageNet、CIFAR100データセットに関する完全な実験は、最先端の結果を示している。
関連論文リスト
- Reduced Jeffries-Matusita distance: A Novel Loss Function to Improve
Generalization Performance of Deep Classification Models [0.0]
本稿では,深層分類モデルの学習における損失関数として,Reduced Jeffries-Matusitaという距離を導入する。
その結果、新しい距離測定はトレーニングプロセスを著しく安定化させ、一般化能力を高め、精度とF1スコアの指標におけるモデルの性能を向上させることを示した。
論文 参考訳(メタデータ) (2024-03-13T10:51:38Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
CIL(Class-Incremental Learning)は、非定常データから新しいクラスを継続的に認識するためにモデルを訓練する。
CILの大きな課題は、非一様分布を特徴とする実世界のデータに適用する場合である。
この二重不均衡問題により、FC層に偏りのある勾配更新が生じ、CILの過度/過度な適合と破滅的な忘れが引き起こされる。
論文 参考訳(メタデータ) (2024-02-28T18:08:03Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
深層ニューラルネットワークのトレーニングにおいて,最も重要でないサンプルを隠蔽する手法を提案する。
我々は,学習プロセス全体への貢献に基づいて,与えられたエポックを除外するサンプルを適応的に見つける。
本手法は, ベースラインと比較して, 最大22%の精度でトレーニング時間を短縮できる。
論文 参考訳(メタデータ) (2023-10-16T06:19:29Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
本稿では,事前学習したニューラルネットワークを新しいタスクで調整し,性能を大幅に向上させる,Contextual Squeeze-and-Excitation (CaSE) という適応ブロックを提案する。
また、メタトレーニングされたCaSEブロックと微調整ルーチンを利用して効率よく適応する、アッパーCaSEと呼ばれるコーディネートダイスに基づく新しいトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-20T15:25:08Z) - Last Layer Re-Training is Sufficient for Robustness to Spurious
Correlations [51.552870594221865]
最後の層再トレーニングは,突発的な相関ベンチマークにおいて,最先端の手法と一致するか,あるいは性能的に優れていることを示す。
また,大規模な画像ネット学習モデルにおける最終層の再トレーニングにより,背景情報やテクスチャ情報への依存を著しく低減できることを示す。
論文 参考訳(メタデータ) (2022-04-06T16:55:41Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - On the Exploration of Incremental Learning for Fine-grained Image
Retrieval [45.48333682748607]
我々は,新たなカテゴリが時間とともに追加される場合に,細粒度画像検索の問題を漸進的に考慮する。
本稿では,検索性能の劣化を抑えるための漸進学習手法を提案する。
提案手法は,新しいクラスにおいて高い性能を保ちながら,元のクラスにおける破滅的な忘れを効果的に軽減する。
論文 参考訳(メタデータ) (2020-10-15T21:07:44Z) - Step-Ahead Error Feedback for Distributed Training with Compressed
Gradient [99.42912552638168]
集中型分散トレーニングにおける局所的エラーフィードバックによって,新たな"段階的ミスマッチ"問題が発生することを示す。
本稿では, 厳密な理論的解析を施した2つの新しい手法, 1) 一歩前進, 2) 誤差平均化を提案する。
論文 参考訳(メタデータ) (2020-08-13T11:21:07Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。