論文の概要: Last Layer Re-Training is Sufficient for Robustness to Spurious
Correlations
- arxiv url: http://arxiv.org/abs/2204.02937v2
- Date: Fri, 30 Jun 2023 22:51:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 16:18:04.333232
- Title: Last Layer Re-Training is Sufficient for Robustness to Spurious
Correlations
- Title(参考訳): ラスト層再訓練はスプリアス相関に対するロバスト性に十分である
- Authors: Polina Kirichenko, Pavel Izmailov, Andrew Gordon Wilson
- Abstract要約: 最後の層再トレーニングは,突発的な相関ベンチマークにおいて,最先端の手法と一致するか,あるいは性能的に優れていることを示す。
また,大規模な画像ネット学習モデルにおける最終層の再トレーニングにより,背景情報やテクスチャ情報への依存を著しく低減できることを示す。
- 参考スコア(独自算出の注目度): 51.552870594221865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network classifiers can largely rely on simple spurious features, such
as backgrounds, to make predictions. However, even in these cases, we show that
they still often learn core features associated with the desired attributes of
the data, contrary to recent findings. Inspired by this insight, we demonstrate
that simple last layer retraining can match or outperform state-of-the-art
approaches on spurious correlation benchmarks, but with profoundly lower
complexity and computational expenses. Moreover, we show that last layer
retraining on large ImageNet-trained models can also significantly reduce
reliance on background and texture information, improving robustness to
covariate shift, after only minutes of training on a single GPU.
- Abstract(参考訳): ニューラルネットワーク分類器は、予測を行うために、バックグラウンドなどの単純なスプリアス機能に大きく依存する。
しかし,これらの場合においても,近年の知見とは対照的に,データの所望の属性に関連するコア機能を学習することが多い。
この知見に触発されて、単純なラストレイヤリトレーニングは、スプリアス相関ベンチマークで最先端のアプローチに匹敵するだけでなく、複雑さと計算コストを大幅に削減できることを示した。
さらに,大規模イメージネット学習モデルにおける最終層再トレーニングにより,背景情報やテクスチャ情報への依存度が著しく低下し,単一のgpu上でのトレーニング後,コバリアントシフトに対するロバスト性が向上することを示した。
関連論文リスト
- On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
本稿では,検証データ上での深層モデルの忘れ度をモニタする,過剰適合度定量化のための新しいスコアを提案する。
オーバーフィットは検証精度を低下させることなく発生しうることを示し,従来よりも一般的である可能性が示唆された。
我々は,1つのネットワークのトレーニング履歴のみに基づいて,新たなアンサンブル法を構築するために,我々の観測結果を用いて,トレーニング時間に追加のコストを要さず,大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-10-17T09:22:22Z) - Improving Out-of-Distribution Generalization of Neural Rerankers with
Contextualized Late Interaction [52.63663547523033]
マルチベクトルの最も単純な形式である後期相互作用は、[]ベクトルのみを使用して類似度スコアを計算する神経リランカにも役立ちます。
異なるモデルサイズと多様な性質の第一段階のレトリバーに一貫性があることが示される。
論文 参考訳(メタデータ) (2023-02-13T18:42:17Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - With Greater Distance Comes Worse Performance: On the Perspective of
Layer Utilization and Model Generalization [3.6321778403619285]
ディープニューラルネットワークの一般化は、マシンラーニングにおける主要なオープンな問題の1つだ。
初期のレイヤは一般的に、トレーニングデータとテストデータの両方のパフォーマンスに関する表現を学びます。
より深いレイヤは、トレーニングのリスクを最小限に抑え、テストや不正なラベル付けされたデータとうまく連携できない。
論文 参考訳(メタデータ) (2022-01-28T05:26:32Z) - Balanced Softmax Cross-Entropy for Incremental Learning [6.5423218639215275]
ディープニューラルネットワークは、新しいクラスや新しいタスクで段階的に訓練されると壊滅的な忘れがちです。
近年の手法は破滅的な忘れを緩和するのに有効であることが証明されている。
本稿では,バランスの取れたソフトマックスクロスエントロピー損失の利用を提案し,それとインクリメンタル学習のための離脱法を組み合わせることで,パフォーマンスを向上させることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T13:30:26Z) - The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models [19.089445797922316]
数桁のパラメータが桁違いに少ない標準U-Netのミニマリストバージョンが、現在のベストプラクティスの性能を近似していることを示す。
また,W-Netと呼ばれる単純な拡張も提案する。
また、Artery/Veinセグメンテーション問題にもアプローチを試行し、その結果を最先端技術に整合させる。
論文 参考訳(メタデータ) (2020-09-03T19:59:51Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。