論文の概要: A News Recommender System Considering Temporal Dynamics and Diversity
- arxiv url: http://arxiv.org/abs/2103.12537v1
- Date: Tue, 23 Mar 2021 13:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 20:43:16.295410
- Title: A News Recommender System Considering Temporal Dynamics and Diversity
- Title(参考訳): 時間的ダイナミクスと多様性を考慮したニュースレコメンダシステム
- Authors: Shaina Raza
- Abstract要約: ニュースレコメンダーシステムでは、読者の好みは時間とともに変化します。
いくつかの選好は突然(短期選好)に流れ、他の選好は長い時間をかけて変化する。
私たちのシステムは、(i)読者行動のダイナミクスに対応でき、(ii)レコメンデーションモデルの設計における正確性と多様性の両方を考慮する必要があります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a news recommender system, a reader's preferences change over time. Some
preferences drift quite abruptly (short-term preferences), while others change
over a longer period of time (long-term preferences). Although the existing
news recommender systems consider the reader's full history, they often ignore
the dynamics in the reader's behavior. Thus, they cannot meet the demand of the
news readers for their time-varying preferences. In addition, the
state-of-the-art news recommendation models are often focused on providing
accurate predictions, which can work well in traditional recommendation
scenarios. However, in a news recommender system, diversity is essential, not
only to keep news readers engaged, but also to play a key role in a democratic
society. In this PhD dissertation, our goal is to build a news recommender
system to address these two challenges. Our system should be able to: (i)
accommodate the dynamics in reader behavior; and (ii) consider both accuracy
and diversity in the design of the recommendation model. Our news recommender
system can also work for unprofiled, anonymous and short-term readers, by
leveraging the rich side information of the news items and by including the
implicit feedback in our model. We evaluate our model with multiple evaluation
measures (both accuracy and diversity-oriented metrics) to demonstrate the
effectiveness of our methods.
- Abstract(参考訳): ニュースレコメンデーションシステムでは、読者の好みは時間とともに変化する。
いくつかの嗜好は突然に(短期的な嗜好)漂うが、一方で長い期間(長期的な嗜好)で変化する。
既存のニュースレコメンダシステムは読者の全履歴を考慮しているが、読者の行動のダイナミクスを無視することが多い。
したがって、ニュース読者の時間によって異なる嗜好に対する要求を満たすことはできない。
さらに、最先端のニュースレコメンデーションモデルは、従来のレコメンデーションシナリオでうまく機能する正確な予測を提供することにしばしば重点を置いている。
しかし、ニュースレコメンデーションシステムでは、多様性はニュース読者の関与を維持するだけでなく、民主主義社会において重要な役割を果たすためにも不可欠である。
この博士論文の目標は、これらの2つの課題に対処するニュースレコメンデーションシステムを構築することです。
本システムでは, 読者行動のダイナミクスに適応し, (i) 推薦モデルの設計において, 精度と多様性の両方を考慮すべきである。
ニュースレコメンダシステムは、ニュースアイテムの豊富なサイド情報を活用し、私たちのモデルに暗黙的なフィードバックを含めることで、非プロファイル、匿名、短期の読者にも機能します。
提案手法の有効性を実証するため,複数の評価尺度(精度と多様性指向指標の両方)を用いて評価を行った。
関連論文リスト
- Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
本稿では,認知バイアスが大規模言語モデル(LLM)に基づくニュースレコメンデータシステムに与える影響について検討する。
データ拡張、エンジニアリングと学習アルゴリズムの側面を通じて、これらのバイアスを軽減する戦略について議論する。
論文 参考訳(メタデータ) (2024-10-03T18:42:07Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Improving Recommendation System Serendipity Through Lexicase Selection [53.57498970940369]
本稿では,レコメンデーションシステムにおけるエコーチャンバーとホモフィリーの存在を測定するための新しいセレンディピティー指標を提案する。
そこで我々は,レキシケース選択と呼ばれる親選択アルゴリズムを採用することにより,よく知られたレコメンデーション手法の多様性保存性の向上を試みる。
以上の結果から,レキシケースの選択とランキングの混合は,パーソナライゼーション,カバレッジ,セレンディピティー・ベンチマークにおいて,純粋にランク付けされている。
論文 参考訳(メタデータ) (2023-05-18T15:37:38Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - DOR: A Novel Dual-Observation-Based Approach for News Recommendation
Systems [2.7648976108201815]
本稿では,ニュースレコメンデーションの問題に対処する新しい手法を提案する。
我々のアプローチは二重観測の考え方に基づいている。
ニュースの内容とユーザの視点の両方を考慮することで、よりパーソナライズされた正確なレコメンデーションを提供することができる。
論文 参考訳(メタデータ) (2023-02-02T22:16:53Z) - Modeling Multi-interest News Sequence for News Recommendation [0.6787897491422114]
セッションベースのニュースレコメンデータシステムは、セッションで彼女/彼によって読んだりクリックされたりした一連のニュースに埋め込まれた潜在的な関心をモデル化して、次のニュースをユーザに推薦する。
本稿では,ニュースレコメンデーションのための多目的ニュースシーケンス(MINS)モデルを提案する。
MINSでは、各ニュースに対する情報埋め込みを学習するために、自己注意に基づくニュースを考案し、次に次のニュースレコメンデーションに備えて、ニュースシーケンスに埋め込まれた潜在的な複数の興味を引き出すために、新たな並列関心ネットワークを考案する。
論文 参考訳(メタデータ) (2022-07-15T08:03:37Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - Aspect-driven User Preference and News Representation Learning for News
Recommendation [9.187076140490902]
ニュースレコメンダシステムは、通常、ユーザーのトピックレベルの表現とレコメンデーションのためのニュースを学習する。
本稿では,アスペクトレベルのユーザ嗜好とニュース表現学習に基づく,アスペクト駆動型ニューズレコメンダシステム(ANRS)を提案する。
論文 参考訳(メタデータ) (2021-10-12T07:38:54Z) - Why Do We Click: Visual Impression-aware News Recommendation [108.73539346064386]
この作品は、ユーザーがニュースを閲覧する際に感じる視覚的印象に基づいてクリック決定を行うという事実にインスパイアされている。
本稿では,ニュースレコメンデーションのためのビジュアル・セマンティック・モデリングを用いて,このような視覚印象情報を捉えることを提案する。
さらに、グローバルな視点から印象を検査し、異なるフィールドの配置や印象に対する異なる単語の空間的位置などの構造情報を抽出する。
論文 参考訳(メタデータ) (2021-09-26T16:58:14Z) - Deep Dynamic Neural Network to trade-off between Accuracy and Diversity
in a News Recommender System [1.3126169294309855]
本稿では,ニュースと読者の興味を統一した枠組みで学習する深層ニューラルネットワークを提案する。
読者のクリック履歴から読者の長期的関心、LSTMSによる最近のクリックからの短期的関心、および注意メカニズムを通じて多様な読者の興味を学びます。
論文 参考訳(メタデータ) (2021-03-15T15:30:25Z) - Beyond Optimizing for Clicks: Incorporating Editorial Values in News
Recommendation [10.458414681622799]
本稿では,ニュース機関の編集価値の文脈で,自動ニュースレコメンデータシステムについて検討する。
提案する推薦システムは,より多様な読解行動をもたらし,記事のカバレッジを高める。
論文 参考訳(メタデータ) (2020-04-21T13:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。