論文の概要: Impression-Aware Recommender Systems
- arxiv url: http://arxiv.org/abs/2308.07857v1
- Date: Tue, 15 Aug 2023 16:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 12:10:44.595330
- Title: Impression-Aware Recommender Systems
- Title(参考訳): 印象認識型推薦システム
- Authors: Fernando B. P\'erez Maurera, Maurizio Ferrari Dacrema, Pablo Castells,
Paolo Cremonesi
- Abstract要約: 新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
- 参考スコア(独自算出の注目度): 57.38537491535016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel data sources bring new opportunities to improve the quality of
recommender systems. Impressions are a novel data source containing past
recommendations (shown items) and traditional interactions. Researchers may use
impressions to refine user preferences and overcome the current limitations in
recommender systems research. The relevance and interest of impressions have
increased over the years; hence, the need for a review of relevant work on this
type of recommenders. We present a systematic literature review on recommender
systems using impressions, focusing on three fundamental angles in research:
recommenders, datasets, and evaluation methodologies. We provide three
categorizations of papers describing recommenders using impressions, present
each reviewed paper in detail, describe datasets with impressions, and analyze
the existing evaluation methodologies. Lastly, we present open questions and
future directions of interest, highlighting aspects missing in the literature
that can be addressed in future works.
- Abstract(参考訳): 新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
インプレッション(インプレッション)は、過去のレコメンデーション(表示項目)と従来のインタラクションを含む、新しいデータソースである。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
インプレッションの関連性と関心は年々高まっているため、この種のレコメンデーションに関する関連する作業のレビューの必要性が高まっている。
本稿では,レコメンダ,データセット,評価方法論の3つの基本的な角度に着目し,インプレッションを用いたレコメンダシステムに関する体系的文献レビューを行う。
本稿では,インプレッションを用いたレコメンデータの分類,レビューされた各論文の詳細な表示,インプレッション付きデータセットの記述,既存の評価手法の分析を行う。
最後に、オープン質問と今後の関心の方向を紹介し、将来の作品で対処できる文献に欠けている側面を強調する。
関連論文リスト
- Review of Explainable Graph-Based Recommender Systems [2.1711205684359247]
本稿では,説明可能なグラフベースレコメンデータシステムの最先端のアプローチについて論じる。
それは、学習方法、説明方法、説明型という3つの側面に基づいて分類する。
論文 参考訳(メタデータ) (2024-07-31T21:30:36Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
レビューベースのレコメンデータシステムは、この分野において重要なサブフィールドとして現れている。
本稿では,これらのシステムを分類し,その特徴,有効性,限界を解析し,最先端の手法を要約する。
本稿では,マルチモーダルデータの統合,複数基準評価情報の統合,倫理的考察など,今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-09T05:45:18Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
この研究は、パーソナライズされたシステムやグループレコメンデーションシステムを含む、レコメンデーションシステムの主要な分類を包括的にまとめることから始まる。
この調査は、レコメンデータシステムにおける堅牢性、データバイアス、公平性の問題を分析します。
この研究は、リコメンデータシステムの開発における最新のトレンドについての洞察を提供し、この分野における今後の研究の方向性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-06-22T05:51:49Z) - Recommender Systems: A Primer [7.487718119544156]
本稿では,従来のレコメンデーション問題の定式化について概説する。
次に、アイテム検索とランキングのための古典的アルゴリズムパラダイムをレビューする。
本稿では,近年のレコメンデーションシステム研究の進展について論じる。
論文 参考訳(メタデータ) (2023-02-06T06:19:05Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
本稿では,ユーザによって割り当てられたソーシャルタグに基づいて,研究論文の深い意味表現を活用するハイブリッドアプローチを提案する。
提案手法は,評価データが極めて少ない場合でも研究論文の推薦に有効である。
論文 参考訳(メタデータ) (2022-09-08T09:13:07Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
実験による推薦システムに対する事前学習の利点を示す。
事前学習を伴うレコメンデータシステムの今後の研究に向けて,いくつかの将来的な方向性について論じる。
論文 参考訳(メタデータ) (2020-09-19T13:06:27Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。