Linear Constraints Learning for Spiking Neurons
- URL: http://arxiv.org/abs/2103.12564v1
- Date: Wed, 10 Mar 2021 13:54:05 GMT
- Title: Linear Constraints Learning for Spiking Neurons
- Authors: Huy Le Nguyen, Dominique Chu
- Abstract summary: We propose a supervised multi-spike learning algorithm which reduces the required number of training iterations.
Experimental results show this method offers better efficiency compared to existing algorithms on the MNIST dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Encoding information with precise spike timings using spike-coded neurons has
been shown to be more computationally powerful than rate-coded approaches.
However, most existing supervised learning algorithms for spiking neurons are
complicated and offer poor time complexity. To address these limitations, we
propose a supervised multi-spike learning algorithm which reduces the required
number of training iterations. We achieve this by formulating a large number of
weight updates as a linear constraint satisfaction problem, which can be solved
efficiently. Experimental results show this method offers better efficiency
compared to existing algorithms on the MNIST dataset. Additionally, we provide
experimental results on the classification capacity of the LIF neuron model,
relative to several parameters of the system.
Related papers
- Erasure Coded Neural Network Inference via Fisher Averaging [28.243239815823205]
Erasure-coded computing has been successfully used in cloud systems to reduce tail latency caused by factors such as straggling servers and heterogeneous traffic variations.
We design a method to code over neural networks, that is, given two or more neural network models, how to construct a coded model whose output is a linear combination of the outputs of the given neural networks.
We conduct experiments to perform erasure coding over neural networks trained on real-world vision datasets and show that the accuracy of the decoded outputs using COIN is significantly higher than other baselines.
arXiv Detail & Related papers (2024-09-02T18:46:26Z) - Stepwise Weighted Spike Coding for Deep Spiking Neural Networks [7.524721345903027]
Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biological neurons.
We propose a novel Stepwise Weighted Spike (SWS) coding scheme to enhance the encoding of information in spikes.
This approach compresses the spikes by weighting the significance of the spike in each step of neural computation, achieving high performance and low energy consumption.
arXiv Detail & Related papers (2024-08-30T12:39:25Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Emulation Learning for Neuromimetic Systems [0.0]
Building on our recent research on neural quantization systems, results on learning quantized motions and resilience to channel dropouts are reported.
We propose a general Deep Q Network (DQN) algorithm that can not only learn the trajectory but also exhibit the advantages of resilience to channel dropout.
arXiv Detail & Related papers (2023-05-04T22:47:39Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
Activation Relaxation (AR) algorithm provides a simple and robust approach for approximating the backpropagation of error algorithm.
We show that the algorithm can be further simplified and made more biologically plausible by introducing a learnable set of backwards weights.
We also investigate whether another biologically implausible assumption of the original AR algorithm -- the frozen feedforward pass -- can be relaxed without damaging performance.
arXiv Detail & Related papers (2020-10-13T08:02:38Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.