Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks
- URL: http://arxiv.org/abs/2103.12694v1
- Date: Tue, 23 Mar 2021 17:16:38 GMT
- Title: Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks
- Authors: Pin Wang, Hanhan Li, Ching-Yao Chan
- Abstract summary: We build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning.
We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks.
- Score: 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from demonstrations has made great progress over the past few years.
However, it is generally data hungry and task specific. In other words, it
requires a large amount of data to train a decent model on a particular task,
and the model often fails to generalize to new tasks that have a different
distribution. In practice, demonstrations from new tasks will be continuously
observed and the data might be unlabeled or only partially labeled. Therefore,
it is desirable for the trained model to adapt to new tasks that have limited
data samples available. In this work, we build an adaptable imitation learning
model based on the integration of Meta-learning and Adversarial Inverse
Reinforcement Learning (Meta-AIRL). We exploit the adversarial learning and
inverse reinforcement learning mechanisms to learn policies and reward
functions simultaneously from available training tasks and then adapt them to
new tasks with the meta-learning framework. Simulation results show that the
adapted policy trained with Meta-AIRL can effectively learn from limited number
of demonstrations, and quickly reach the performance comparable to that of the
experts on unseen tasks.
Related papers
- Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
We aim to exploit external knowledge of task relations to improve training stability via effective mini-batching of tasks.
We hypothesize that selecting a diverse set of tasks in a mini-batch will lead to a better estimate of the full gradient and hence will lead to a reduction of noise in training.
arXiv Detail & Related papers (2023-12-27T15:33:52Z) - Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
arXiv Detail & Related papers (2023-07-18T01:53:18Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - MetaICL: Learning to Learn In Context [87.23056864536613]
We introduce MetaICL, a new meta-training framework for few-shot learning where a pretrained language model is tuned to do in-context learn-ing on a large set of training tasks.
We show that MetaICL approaches (and sometimes beats) the performance of models fully finetuned on the target task training data, and outperforms much bigger models with nearly 8x parameters.
arXiv Detail & Related papers (2021-10-29T17:42:08Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.