Exploring intra-task relations to improve meta-learning algorithms
- URL: http://arxiv.org/abs/2312.16612v1
- Date: Wed, 27 Dec 2023 15:33:52 GMT
- Title: Exploring intra-task relations to improve meta-learning algorithms
- Authors: Prabhat Agarwal, Shreya Singh
- Abstract summary: We aim to exploit external knowledge of task relations to improve training stability via effective mini-batching of tasks.
We hypothesize that selecting a diverse set of tasks in a mini-batch will lead to a better estimate of the full gradient and hence will lead to a reduction of noise in training.
- Score: 1.223779595809275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning has emerged as an effective methodology to model several
real-world tasks and problems due to its extraordinary effectiveness in the
low-data regime. There are many scenarios ranging from the classification of
rare diseases to language modelling of uncommon languages where the
availability of large datasets is rare. Similarly, for more broader scenarios
like self-driving, an autonomous vehicle needs to be trained to handle every
situation well. This requires training the ML model on a variety of tasks with
good quality data. But often times, we find that the data distribution across
various tasks is skewed, i.e.the data follows a long-tail distribution. This
leads to the model performing well on some tasks and not performing so well on
others leading to model robustness issues. Meta-learning has recently emerged
as a potential learning paradigm which can effectively learn from one task and
generalize that learning to unseen tasks. In this study, we aim to exploit
external knowledge of task relations to improve training stability via
effective mini-batching of tasks. We hypothesize that selecting a diverse set
of tasks in a mini-batch will lead to a better estimate of the full gradient
and hence will lead to a reduction of noise in training.
Related papers
- Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Boosting a Model Zoo for Multi-Task and Continual Learning [15.110807414130923]
"Model Zoo" is an algorithm that builds an ensemble of models, each of which is very small, and it is trained on a smaller set of tasks.
Model Zoo achieves large gains in prediction accuracy compared to state-of-the-art methods in multi-task and continual learning.
arXiv Detail & Related papers (2021-06-06T04:25:09Z) - Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks [2.1485350418225244]
We build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning.
We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks.
arXiv Detail & Related papers (2021-03-23T17:16:38Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.