Probing many-body dynamics in a two dimensional dipolar spin ensemble
- URL: http://arxiv.org/abs/2103.12742v3
- Date: Sat, 12 Nov 2022 19:32:35 GMT
- Title: Probing many-body dynamics in a two dimensional dipolar spin ensemble
- Authors: Emily J. Davis, Bingtian Ye, Francisco Machado, Simon A. Meynell,
Weijie Wu, Thomas Mittiga, William Schenken, Maxime Joos, Bryce Kobrin,
Yuanqi Lyu, Zilin Wang, Dolev Bluvstein, Soonwon Choi, Chong Zu, Ania C.
Bleszynski Jayich, and Norman Y. Yao
- Abstract summary: We experimentally characterize both static and dynamical properties of strongly-interacting magnetic dipoles.
We demonstrate that signatures of the many-body system's dimensionality, dynamics, and disorder are naturally encoded in the functional form of the NV's decoherence profile.
- Score: 0.898251564045865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The most direct approach for characterizing the quantum dynamics of a
strongly-interacting system is to measure the time-evolution of its full
many-body state. Despite the conceptual simplicity of this approach, it quickly
becomes intractable as the system size grows. An alternate framework is to
think of the many-body dynamics as generating noise, which can be measured by
the decoherence of a probe qubit. Our work centers on the following question:
What can the decoherence dynamics of such a probe tell us about the many-body
system? In particular, we utilize optically addressable probe spins to
experimentally characterize both static and dynamical properties of
strongly-interacting magnetic dipoles. Our experimental platform consists of
two types of spin defects in diamond: nitrogen-vacancy (NV) color centers
(probe spins) and substitutional nitrogen impurities (many-body system). We
demonstrate that signatures of the many-body system's dimensionality, dynamics,
and disorder are naturally encoded in the functional form of the NV's
decoherence profile. Leveraging these insights, we directly characterize the
two-dimensional nature of a nitrogen delta-doped diamond sample. In addition,
we explore two distinct facets of the many-body dynamics: First, we address a
persistent debate about the microscopic nature of spin dynamics in
strongly-interacting dipolar systems. Second, we demonstrate direct control
over the correlation time of the many-body system. Finally, we demonstrate
polarization exchange between NV and P1 centers, opening the door to quantum
sensing and simulation using two-dimensional spin-polarized ensembles.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Finding the Dynamics of an Integrable Quantum Many-Body System via
Machine Learning [0.0]
We study the dynamics of the Gaudin magnet ("central-spin model") using machine-learning methods.
Motivated in part by this intuition, we use a neural-network representation for each variational eigenstate of the model Hamiltonian.
Having an efficient description of this susceptibility opens the door to improved characterization and quantum control procedures for qubits interacting with an environment of quantum two-level systems.
arXiv Detail & Related papers (2023-07-06T21:49:01Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Distinguishing multi-spin interactions from lower-order effects [0.0]
Multi-spin interactions can be engineered with artificial quantum spins.
It is challenging to verify such interactions experimentally.
Here we describe two methods to characterize the $n$-local coupling of $n$ spins.
arXiv Detail & Related papers (2021-11-24T19:00:01Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing spin dynamics on diamond surfaces using a single quantum sensor [0.0]
We study the dynamics of a disordered spin ensemble at the diamond surface.
These observations demonstrate the potential of a local sensor for understanding complex systems.
arXiv Detail & Related papers (2021-03-23T18:00:36Z) - Dynamics of Ultracold Bosons in Artificial Gauge Fields: Angular
Momentum, Fragmentation, and the Variance of Entropy [0.0]
We consider the dynamics of two-dimensional interacting ultracold bosons triggered by suddenly switching on an artificial gauge field.
We analyze the emergent dynamics by monitoring the angular momentum, the fragmentation as well the entropy and variance of the entropy of absorption or single-shot images.
arXiv Detail & Related papers (2020-12-17T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.