論文の概要: TeCoMiner: Topic Discovery Through Term Community Detection
- arxiv url: http://arxiv.org/abs/2103.12882v1
- Date: Tue, 23 Mar 2021 23:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 14:07:55.348460
- Title: TeCoMiner: Topic Discovery Through Term Community Detection
- Title(参考訳): TeCoMiner: 短期的コミュニティ検出によるトピック発見
- Authors: Andreas Hamm, Jana Thelen, Rasmus Beckmann, Simon Odrowski (German
Aerospace Center DLR)
- Abstract要約: tecominerはテキストコレクションのトピックコンテンツを調べるためのインタラクティブなツールである。
トピックを特定し、ツールの機能を説明し、アプリケーションをスケッチするために使用するメソッドの概要を述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This note is a short description of TeCoMiner, an interactive tool for
exploring the topic content of text collections. Unlike other topic modeling
tools, TeCoMiner is not based on some generative probabilistic model but on
topological considerations about co-occurrence networks of terms. We outline
the methods used for identifying topics, describe the features of the tool, and
sketch an application, using a corpus of policy related scientific news on
environmental issues published by the European Commission over the last decade.
- Abstract(参考訳): このメモは、テキストコレクションのトピック内容を探索するインタラクティブツールであるTeCoMinerの短い説明である。
他のトピックモデリングツールとは異なり、TeCoMinerは生成確率モデルではなく、用語の共起ネットワークに関するトポロジ的考察に基づいている。
我々は,過去10年間に欧州委員会が公表した環境問題に関する政策関連科学ニュースのコーパスを用いて,トピックの識別,ツールの特徴の説明,アプリケーションのスケッチに使用される手法の概要を述べる。
関連論文リスト
- Neural Multimodal Topic Modeling: A Comprehensive Evaluation [18.660262940980477]
本稿では,マルチモーダルトピックモデリングの体系的および包括的評価について述べる。
本稿では2つの新しいトピックモデリングソリューションと2つの新しい評価指標を提案する。
全体として、前代未聞の豊かで多様なデータセットのコレクションに対する評価は、両方のモデルが一貫性と多様なトピックを生成することを示している。
論文 参考訳(メタデータ) (2024-03-26T01:29:46Z) - TopicAdapt- An Inter-Corpora Topics Adaptation Approach [27.450275637652418]
本稿では、関連するソースコーパスから関連するトピックを適応し、ソースコーパスに存在しないターゲットコーパスに新しいトピックを発見できるトピックモデルTopicAdaptを提案する。
多様なドメインからの複数のデータセットに対する実験は、最先端のトピックモデルに対して提案されたモデルの優位性を示している。
論文 参考訳(メタデータ) (2023-10-08T02:56:44Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - Semantic Similarity Measure of Natural Language Text through Machine
Learning and a Keyword-Aware Cross-Encoder-Ranking Summarizer -- A Case Study
Using UCGIS GIS&T Body of Knowledge [2.4909170697740968]
GIS&T Body of Knowledge (BoK)は、地理空間的トピックを定義し、開発し、文書化するためのコミュニティ主導の取り組みである。
本研究は,テキストから意味を抽出する上で,複数自然言語処理(NLP)技術の有効性を評価する。
また、科学出版物を分析するための機械学習技術の使用について、新たな視点を提供する。
論文 参考訳(メタデータ) (2023-05-17T01:17:57Z) - Topics as Entity Clusters: Entity-based Topics from Large Language Models and Graph Neural Networks [0.6486052012623045]
本稿では,エンティティのバイモーダルベクトル表現を用いたトピッククラスタリング手法を提案する。
我々のアプローチは、最先端のモデルと比較してエンティティを扱うのに適している。
論文 参考訳(メタデータ) (2023-01-06T10:54:54Z) - SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining [0.07538606213726905]
意見マイニングにおける最近の研究は、単語埋め込みに基づくトピックモデリング手法を提案する。
そこで本稿では,SocialVisTUMを用いてソーシャルメディアのテキストに関連性のあるトピックモデルを表示する方法について述べる。
論文 参考訳(メタデータ) (2021-10-20T14:04:13Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSAは、与えられた側面に関してレビューで表現された感情を予測することを目的としている。
与えられたアスペクトは、コンテキストモデリングプロセスにおけるコンテキストからの新たなヒントと見なされるべきである。
異なるバックボーンに基づいて複数のアスペクト認識コンテキストエンコーダを設計する。
論文 参考訳(メタデータ) (2021-06-21T02:26:03Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - CTNet: Context-based Tandem Network for Semantic Segmentation [77.4337867789772]
本研究では,空間コンテキスト情報とチャネルコンテキスト情報とを対話的に探索し,新しいコンテキストベースタンデムネットワーク(CTNet)を提案する。
セマンティックセグメンテーションのための学習表現の性能をさらに向上するため、2つのコンテキストモジュールの結果を適応的に統合する。
論文 参考訳(メタデータ) (2021-04-20T07:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。