論文の概要: SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining
- arxiv url: http://arxiv.org/abs/2110.10575v2
- Date: Mon, 24 Jul 2023 20:07:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 21:58:13.050539
- Title: SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining
- Title(参考訳): SocialVisTUM - ソーシャルメディアオピニオンマイニングにおける関連ニューラルトピックモデルのためのインタラクティブ可視化ツールキット
- Authors: Gerhard Johann Hagerer, Martin Kirchhoff, Hannah Danner, Robert Pesch,
Mainak Ghosh, Archishman Roy, Jiaxi Zhao, Georg Groh
- Abstract要約: 意見マイニングにおける最近の研究は、単語埋め込みに基づくトピックモデリング手法を提案する。
そこで本稿では,SocialVisTUMを用いてソーシャルメディアのテキストに関連性のあるトピックモデルを表示する方法について述べる。
- 参考スコア(独自算出の注目度): 0.07538606213726905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in opinion mining proposed word embedding-based topic
modeling methods that provide superior coherence compared to traditional topic
modeling. In this paper, we demonstrate how these methods can be used to
display correlated topic models on social media texts using SocialVisTUM, our
proposed interactive visualization toolkit. It displays a graph with topics as
nodes and their correlations as edges. Further details are displayed
interactively to support the exploration of large text collections, e.g.,
representative words and sentences of topics, topic and sentiment
distributions, hierarchical topic clustering, and customizable, predefined
topic labels. The toolkit optimizes automatically on custom data for optimal
coherence. We show a working instance of the toolkit on data crawled from
English social media discussions about organic food consumption. The
visualization confirms findings of a qualitative consumer research study.
SocialVisTUM and its training procedures are accessible online.
- Abstract(参考訳): 意見マイニングにおける最近の研究は,従来のトピックモデリングに比べて一貫性に優れた単語埋め込みに基づくトピックモデリング手法を提案する。
本稿では,これらの手法を用いてソーシャルビジュアライゼーションツールキットsocialvistumを用いて,ソーシャルメディアのテキストに関連づけられたトピックモデルを表示できることを実証する。
トピックをノードとしてグラフを表示し、相関をエッジとして表示する。
トピックや感情の分布、階層的なトピッククラスタリング、カスタマイズ可能な事前定義されたトピックラベルなど、大きなテキストコレクションの探索を支援するために、さらに詳細がインタラクティブに表示される。
このツールキットは最適なコヒーレンスのためにカスタムデータを自動的に最適化する。
本稿では,有機食品消費に関する英ソーシャルメディアの議論から収集したデータに基づくツールキットの動作例を示す。
ビジュアライゼーションは、質的な消費者調査の結果を確認します。
SocialVisTUMとそのトレーニング手順はオンラインで利用できる。
関連論文リスト
- Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms [6.349503549199403]
本研究は,トピック抽出プロセスのための革新的エンド・ツー・エンドのセマンティクス駆動トピックモデリング手法を提案する。
本モデルは,事前学習したトランスフォーマーベース言語モデルを用いて文書埋め込みを生成する。
ChatGPTや従来のトピックモデリングアルゴリズムと比較して、我々のモデルはより一貫性があり有意義なトピックを提供する。
論文 参考訳(メタデータ) (2024-09-30T18:15:31Z) - GINopic: Topic Modeling with Graph Isomorphism Network [0.8962460460173959]
本稿では,グラフ同型ネットワークに基づく話題モデリングフレームワークGINopicを紹介し,単語間の相関関係を捉える。
本稿では,既存のトピックモデルと比較してGINopicの有効性を実証し,トピックモデリングの進歩の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-04-02T17:18:48Z) - The Geometric Structure of Topic Models [0.0]
研究や応用に広く利用されているにもかかわらず、トピックモデルの詳細な分析は依然としてオープンな研究トピックである。
平坦なトピックモデルから順序構造を導出する入射幾何学的手法を提案する。
規則的モチーフに基づく概念階層のための新しい可視化パラダイムを提案する。
論文 参考訳(メタデータ) (2024-03-06T10:53:51Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - TopicNet: Semantic Graph-Guided Topic Discovery [51.71374479354178]
既存の階層的なトピックモデルでは、教師なしの方法でテキストコーパスから意味論的意味のあるトピックを抽出することができる。
TopicNetを階層的なトピックモデルとして導入し、学習に影響を与えるための帰納的バイアスとして、事前構造知識を注入する。
論文 参考訳(メタデータ) (2021-10-27T09:07:14Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
自動対話評価のためのグラフ強調表現のための新しい評価指標GRADEを提案する。
具体的には、対話コヒーレンスを評価するために、粗粒度発話レベルの文脈化表現と細粒度トピックレベルのグラフ表現の両方を組み込んでいる。
実験の結果,GRADEは多様な対話モデルの測定において,他の最先端の指標よりも優れていた。
論文 参考訳(メタデータ) (2020-10-08T14:07:32Z) - Keyword Assisted Topic Models [0.0]
少数のキーワードを提供することで,話題モデルの計測性能を大幅に向上させることができることを示す。
KeyATMは、より解釈可能な結果を提供し、文書分類性能が向上し、標準トピックモデルよりもトピックの数に敏感でない。
論文 参考訳(メタデータ) (2020-04-13T14:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。