Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR
Images
- URL: http://arxiv.org/abs/2103.13151v1
- Date: Wed, 24 Mar 2021 12:52:54 GMT
- Title: Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR
Images
- Authors: Yishan He, Fei Gao, Jun Wang, Amir Hussain, Erfu Yang, Huiyu Zhou
- Abstract summary: Methods based on oriented bounding box (OBB) have gradually received attention from researchers.
Most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression.
In this paper, we propose to detect SAR ships by learning polar encodings.
- Score: 22.93997487064683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Common horizontal bounding box (HBB)-based methods are not capable of
accurately locating slender ship targets with arbitrary orientations in
synthetic aperture radar (SAR) images. Therefore, in recent years, methods
based on oriented bounding box (OBB) have gradually received attention from
researchers. However, most of the recently proposed deep learning-based methods
for OBB detection encounter the boundary discontinuity problem in angle or key
point regression. In order to alleviate this problem, researchers propose to
introduce some manually set parameters or extra network branches for
distinguishing the boundary cases, which make training more diffcult and lead
to performance degradation. In this paper, in order to solve the boundary
discontinuity problem in OBB regression, we propose to detect SAR ships by
learning polar encodings. The encoding scheme uses a group of vectors pointing
from the center of the ship target to the boundary points to represent an OBB.
The boundary discontinuity problem is avoided by training and inference
directly according to the polar encodings. In addition, we propose an Intersect
over Union (IOU) -weighted regression loss, which further guides the training
of polar encodings through the IOU metric and improves the detection
performance. Experiments on the Rotating SAR Ship Detection Dataset (RSSDD)
show that the proposed method can achieve better detection performance over
other comparison algorithms and other OBB encoding schemes, demonstrating the
effectiveness of our method.
Related papers
- Bagged Regularized $k$-Distances for Anomaly Detection [9.899763598214122]
We propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD)
Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE)
On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity.
arXiv Detail & Related papers (2023-12-02T07:00:46Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data.
Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase.
We propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds.
arXiv Detail & Related papers (2023-10-19T12:59:55Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Anchor Free remote sensing detector based on solving discrete polar
coordinate equation [4.708085033897991]
We propose an Anchor Free aviatic remote sensing object detector (BWP-Det) to detect rotating and multi-scale object.
Specifically, we design a interactive double-branch(IDB) up-sampling network, in which one branch gradually up-sampling is used for the prediction of Heatmap.
We improve a weighted multi-scale convolution (WmConv) in order to highlight the difference between foreground and background.
arXiv Detail & Related papers (2023-03-21T09:28:47Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector.
We consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD)
Our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks.
arXiv Detail & Related papers (2022-08-29T17:04:30Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - A Novel CNN-based Method for Accurate Ship Detection in HR Optical
Remote Sensing Images via Rotated Bounding Box [10.689750889854269]
A novel CNN-based ship detection method is proposed, by overcoming some common deficiencies of current CNN-based methods in ship detection.
We are able to predict the orientation and other variables independently, and yet more effectively, with a novel dual-branch regression network.
Experimental results demonstrate the great superiority of the proposed method in ship detection.
arXiv Detail & Related papers (2020-04-15T14:48:46Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.