論文の概要: Automatic Cough Classification for Tuberculosis Screening in a
Real-World Environment
- arxiv url: http://arxiv.org/abs/2103.13300v1
- Date: Tue, 23 Mar 2021 15:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 02:39:13.337569
- Title: Automatic Cough Classification for Tuberculosis Screening in a
Real-World Environment
- Title(参考訳): 実環境における結核検診の自動カフ分類
- Authors: Madhurananda Pahar, Marisa Klopper, Byron Reeve, Grant Theron, Rob
Warren, Thomas Niesler
- Abstract要約: 結核(tb)患者と他の肺疾患患者が発する発声音とを自動的に判別することが可能であることを示す第1報を報告する。
本実験は, TB患者16名, 呼吸器疾患患者33名, TB以外の患者33名を対象に, 実世界の診療所で得られたコークス記録のデータセットに基づいて行った。
以上の結果から, 音素の自動分類は, TBの低コストで展開可能なフロントラインスクリーニングの手段として有望であり, 開発途上国のTB負荷に大きく貢献すると考えられる。
- 参考スコア(独自算出の注目度): 5.6663315405998365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present first results showing that it is possible to automatically
discriminate between the coughing sounds produced by patients with tuberculosis
(TB) and those produced by patients with other lung ailments in a real-world
noisy environment. Our experiments are based on a dataset of cough recordings
obtained in a real-world clinic setting from 16 patients confirmed to be
suffering from TB and 33 patients that are suffering from respiratory
conditions, confirmed as other than TB. We have trained and evaluated several
machine learning classifiers, including logistic regression (LR), support
vector machines (SVM), k-nearest neighbour (KNN), multilayer perceptrons (MLP)
and convolutional neural networks (CNN) inside a nested k-fold cross-validation
and find that, although classification is possible in all cases, the best
performance is achieved using the LR classifier. In combination with feature
selection by sequential forward search (SFS), our best LR system achieves an
area under the ROC curve (AUC) of 0.94 using 23 features selected from a set of
78 high-resolution mel-frequency cepstral coefficients (MFCCs). This system
achieves a sensitivity of 93% at a specificity of 95% and thus exceeds the 90\%
sensitivity at 70% specificity specification considered by the WHO as minimal
requirements for community-based TB triage test. We conclude that automatic
classification of cough audio sounds is promising as a viable means of low-cost
easily-deployable front-line screening for TB, which will greatly benefit
developing countries with a heavy TB burden.
- Abstract(参考訳): 本研究は,結核患者(tb)の発声音と,他の肺疾患患者が発する発声音とを,実環境の騒音環境下で自動的に判別できることを示す第1報である。
本実験は, TB患者16名, 呼吸器疾患患者33名, TB以外の患者33名を対象に, 実世界の診療所で得られたコークス記録のデータセットに基づいて行った。
我々は,nexted k-fold cross-validation内で,ロジスティック回帰(LR),サポートベクタマシン(SVM),k-nearest neighbor(KNN),多層パーセプトロン(MLP),畳み込みニューラルネットワーク(CNN)などの機械学習分類器を訓練・評価し,すべての場合において分類が可能であるが,最高の性能をLR分類器を用いて達成することを発見した。
逐次フォワードサーチ(SFS)による特徴選択と組み合わせて、最高のLRシステムは78個の高分解能メル周波数ケプストラム係数(MFCC)から選択された23個の特徴を用いて、OC曲線(AUC)の0.94以下の領域を達成する。
このシステムは95%の特異度で93%の感度を達成し、コミュニティベースのtbトリアージテストの最小要件としてwhoが考慮している70%の特異度仕様で90\%の感度を超える。
以上の結果から, 音素の自動分類は, TBの低コストで展開可能なフロントラインスクリーニングの手段として有望であり, 開発途上国のTB負荷に大きく貢献すると考えられる。
関連論文リスト
- Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - A Generic Deep Learning Based Cough Analysis System from Clinically
Validated Samples for Point-of-Need Covid-19 Test and Severity Levels [85.41238731489939]
臨床検体8,380名を対象に,Covid-19の迅速一次スクリーニングツールの検出性能について検討した。
提案手法は,経験的モード分解(EMD)に基づくアルゴリズムであり,その後に音声特徴量に基づく分類を行う。
DeepCoughの2つの異なるバージョン、すなわちDeepCough2DとDeepCough3Dのテンソル次元について検討した。
論文 参考訳(メタデータ) (2021-11-10T19:39:26Z) - Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images [6.1020196190084555]
新型コロナウイルスの感染者数は1億人以上で、2400万人以上が死亡している。
胸部X線(CXR)や胸部CT(CCT)などの医療画像の使用は、優れたソリューションであることが証明されています。
肺炎パターンを同定するために,確率的支援ベクトルマシン(SVM)に基づくアンサンブル分類器を提案する。
論文 参考訳(メタデータ) (2021-03-04T11:30:38Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - COVID-19 Cough Classification using Machine Learning and Global
Smartphone Recordings [6.441511459132334]
本稿では、スマートフォン上で記録された新型コロナウイルス陰性および健康性の両方から、新型コロナウイルス陽性を識別できる機械学習ベースのコークス分類器を提案する。
この種のスクリーニングは非接触で容易に適用でき、テストセンターでの負荷軽減や送信制限に役立つ。
論文 参考訳(メタデータ) (2020-12-02T13:35:42Z) - Automated triage of COVID-19 from various lung abnormalities using chest
CT features [2.4956060473718407]
入力胸部CTをスキャンし、新型コロナウイルスの患者をトリアージする、完全に自動化されたAIベースのシステムを提案する。
肺や感染症の統計、テクスチャ、形状、位置など、さまざまな特徴を生成して、機械学習ベースの分類器を訓練します。
2191例のCTデータセットを用いて本システムの評価を行い,90.8%の感度で85.4%の特異性,94.0%のROC-AUCで堅牢な解を示した。
論文 参考訳(メタデータ) (2020-10-24T19:44:48Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - A Systematic Search over Deep Convolutional Neural Network Architectures
for Screening Chest Radiographs [4.6411273009803065]
胸部X線写真は肺・胸部疾患のスクリーニングに用いられる。
近年の取り組みは、深層畳み込みニューラルネットワーク(CNN)のアンサンブルを用いた性能ベンチマークを実証している。
複数の標準CNNアーキテクチャを体系的に探索し、分類性能がアンサンブルと同等であることが判明した単一候補モデルを特定した。
論文 参考訳(メタデータ) (2020-04-24T12:30:40Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。