論文の概要: Under Pressure: Learning to Detect Slip with Barometric Tactile Sensors
- arxiv url: http://arxiv.org/abs/2103.13460v1
- Date: Wed, 24 Mar 2021 19:29:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 02:38:39.526952
- Title: Under Pressure: Learning to Detect Slip with Barometric Tactile Sensors
- Title(参考訳): 圧力下:バロメトリック触覚センサによる滑り検出の学習
- Authors: Abhinav Grover, Christopher Grebe, Philippe Nadeau, Jonathan Kelly
- Abstract要約: 本稿では,バロメトリック触覚センサを用いたスリップ検出法を提案する。
我々は91%以上のスリップ検出精度を達成することができる。
バロメトリック触覚センシング技術とデータ駆動学習の組み合わせは、多くの複雑な操作タスクに適しています。
- 参考スコア(独自算出の注目度): 7.35805050004643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to perceive object slip through tactile feedback allows humans to
accomplish complex manipulation tasks including maintaining a stable grasp.
Despite the utility of tactile information for many robotics applications,
tactile sensors have yet to be widely deployed in industrial settings -- part
of the challenge lies in identifying slip and other key events from the tactile
data stream. In this paper, we present a learning-based method to detect slip
using barometric tactile sensors. These sensors have many desirable properties
including high reliability and durability, and are built from very inexpensive
components. We are able to achieve slip detection accuracies of greater than
91% while displaying robustness to the speed and direction of the slip motion.
Further, we test our detector on two robot manipulation tasks involving a
variety of common objects and demonstrate successful generalization to
real-world scenarios not seen during training. We show that barometric tactile
sensing technology, combined with data-driven learning, is potentially suitable
for many complex manipulation tasks such as slip compensation.
- Abstract(参考訳): 触覚フィードバックを通じて物体のすべりを知覚する能力により、人間は安定した把握の維持を含む複雑な操作を達成できる。
多くのロボティクスアプリケーションに触覚情報の有用性があるにもかかわらず、触覚センサーは産業環境では広く展開されていない。
本稿では,バロメトリック・触覚センサを用いてスリップを検出する学習手法を提案する。
これらのセンサーは高い信頼性と耐久性を含む多くの望ましい特性を持ち、非常に安価な部品で構築されている。
我々はスリップ運動の速度と方向に頑健さを示しながら、91%以上のスリップ検出精度を達成することができる。
さらに,多種多様な共通物体を含む2つのロボット操作タスク上で検出装置を試験し,訓練中に見えない実世界のシナリオへの一般化を実証した。
データ駆動学習と組み合わせたバロメトリック触覚センシング技術は,スリップ補償などの複雑な操作に適している可能性が示唆された。
関連論文リスト
- AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors [11.506370451126378]
Visuo-Tactileセンサーは、人間の触覚をエミュレートし、ロボットが物体を理解して操作できるようにする。
そこで本研究では,4種類のビジュオ触覚センサを用いたマルチモーダル触覚マルチセンサデータセットであるTacQuadを紹介する。
マルチレベル構造を持つ静的動的マルチセンサ表現学習フレームワークであるAnyTouchを提案する。
論文 参考訳(メタデータ) (2025-02-15T08:33:25Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
マルチフィンガーハンドとバイソタクティブルデータを用いたバイマニアルシステムを用いて,人間の実演からの学習を探索する。
以上の結果から,バイスオタクティブルデータからの両指多指操作における有望な進歩が示唆された。
論文 参考訳(メタデータ) (2024-04-25T17:59:41Z) - A model-free approach to fingertip slip and disturbance detection for
grasp stability inference [0.0]
触覚センサを用いた握り安定性の評価手法を提案する。
我々は、アレグロハンドに搭載された高感度のウスキン触覚センサーを用いて、我々の手法を検証、検証した。
論文 参考訳(メタデータ) (2023-11-22T09:04:26Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy [6.739132519488627]
本研究では,スリップ検出をリアルタイムで連続的に行う物理インフォームド・データ駆動方式を提案する。
我々は、光学式触覚センサーであるGelSight Miniを、カスタムデザインのグリップに装着して、触覚データを収集する。
その結果,最高の分類アルゴリズムは95.61%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T03:16:21Z) - Learning to Detect Slip with Barometric Tactile Sensors and a Temporal
Convolutional Neural Network [7.346580429118843]
本研究では,バロメトリック・触覚センサを用いたスリップ検出手法を提案する。
我々は、スリップを検出するために時間畳み込みニューラルネットワークを訓練し、高い検出精度を実現する。
データ駆動学習と組み合わせたバロメトリック触覚センシング技術は,スリップ補償などの操作作業に適している,と我々は主張する。
論文 参考訳(メタデータ) (2022-02-19T08:21:56Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - Leveraging distributed contact force measurements for slip detection: a
physics-based approach enabled by a data-driven tactile sensor [5.027571997864706]
本稿では,新たなモデルに基づくスリップ検出パイプラインについて述べる。
分散力を正確に推定する視覚ベースの触覚センサを、6自由度コボットと2フィンガーグリップパーからなる把握装置に統合した。
その結果, 形状, 材料, 重量の異なる物体を操作しながら, スリップを確実に予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-23T17:12:46Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
触覚シミュレーションのための粒子の弾性相互作用(EIP)を提案する。
EIPは、触覚センサを協調粒子群としてモデル化し、接触時の粒子の変形を制御するために弾性特性を適用した。
さらに,触覚データと視覚画像間の情報融合を可能にする触覚知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:49:59Z) - PyTouch: A Machine Learning Library for Touch Processing [68.32055581488557]
我々は、タッチセンシング信号の処理に特化した、最初の機械学習ライブラリであるPyTouchを紹介する。
PyTouchはモジュール式で使いやすく、最先端のタッチ処理機能をサービスとして提供するように設計されている。
タッチ検出,スリップ,オブジェクトポーズ推定などのタッチ処理タスクにおいて,触覚センサの実際のデータからPyTouchを評価する。
論文 参考訳(メタデータ) (2021-05-26T18:55:18Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
既存の触覚センサーは、平らで、感度が小さいか、低解像度の信号のみを提供する。
我々は,多方向高解像度触覚センサOmniTactを紹介する。
我々は,ロボット制御の課題に対して,OmniTactの能力を評価する。
論文 参考訳(メタデータ) (2020-03-16T01:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。