論文の概要: A model-free approach to fingertip slip and disturbance detection for
grasp stability inference
- arxiv url: http://arxiv.org/abs/2311.13245v1
- Date: Wed, 22 Nov 2023 09:04:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 15:44:00.470362
- Title: A model-free approach to fingertip slip and disturbance detection for
grasp stability inference
- Title(参考訳): 把持安定性推定のための指先すべりと外乱検出に対するモデルフリーアプローチ
- Authors: Dounia Kitouni (ISIR), Mahdi Khoramshahi (ISIR), Veronique Perdereau
(ISIR)
- Abstract要約: 触覚センサを用いた握り安定性の評価手法を提案する。
我々は、アレグロハンドに搭載された高感度のウスキン触覚センサーを用いて、我々の手法を検証、検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic capacities in object manipulation are incomparable to those of
humans. Besides years of learning, humans rely heavily on the richness of
information from physical interaction with the environment. In particular,
tactile sensing is crucial in providing such rich feedback. Despite its
potential contributions to robotic manipulation, tactile sensing is less
exploited; mainly due to the complexity of the time series provided by tactile
sensors. In this work, we propose a method for assessing grasp stability using
tactile sensing. More specifically, we propose a methodology to extract
task-relevant features and design efficient classifiers to detect object
slippage with respect to individual fingertips. We compare two classification
models: support vector machine and logistic regression. We use highly sensitive
Uskin tactile sensors mounted on an Allegro hand to test and validate our
method. Our results demonstrate that the proposed method is effective in
slippage detection in an online fashion.
- Abstract(参考訳): 物体操作におけるロボット能力は人間のものとは相容れない。
長年の学習に加えて、人間は環境との物理的相互作用からの情報の豊かさに大きく依存している。
特に触覚センシングは、このようなリッチなフィードバックを提供する上で重要である。
ロボット操作への潜在的な貢献にもかかわらず、触覚センサーは、主に触覚センサーによって提供される時系列の複雑さのために、あまり利用されない。
本研究では触覚センシングを用いた把持安定性の評価手法を提案する。
具体的には,タスク関連特徴を抽出する手法と,個々の指先に対して物体のすべりを検出する効率的な分類器を提案する。
サポートベクターマシンとロジスティック回帰の2つの分類モデルを比較した。
我々は,アレグロハンドに装着した高感度uskin触覚センサを用いて本手法を検証・検証した。
提案手法は,オンライン形式での滑り検出に有効であることを実証する。
関連論文リスト
- Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
人間とロボットはどちらも、周囲の環境を知覚し、相互作用するためにタッチを使うことの恩恵を受ける。
ここでは、タッチのデジタル化を改善するための概念的および技術革新について述べる。
これらの進歩は、高度なセンシング機能を備えた人工指型センサーに具現化されている。
論文 参考訳(メタデータ) (2024-11-04T18:38:50Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy [6.739132519488627]
本研究では,スリップ検出をリアルタイムで連続的に行う物理インフォームド・データ駆動方式を提案する。
我々は、光学式触覚センサーであるGelSight Miniを、カスタムデザインのグリップに装着して、触覚データを収集する。
その結果,最高の分類アルゴリズムは95.61%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T03:16:21Z) - Learning to Detect Slip with Barometric Tactile Sensors and a Temporal
Convolutional Neural Network [7.346580429118843]
本研究では,バロメトリック・触覚センサを用いたスリップ検出手法を提案する。
我々は、スリップを検出するために時間畳み込みニューラルネットワークを訓練し、高い検出精度を実現する。
データ駆動学習と組み合わせたバロメトリック触覚センシング技術は,スリップ補償などの操作作業に適している,と我々は主張する。
論文 参考訳(メタデータ) (2022-02-19T08:21:56Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - Leveraging distributed contact force measurements for slip detection: a
physics-based approach enabled by a data-driven tactile sensor [5.027571997864706]
本稿では,新たなモデルに基づくスリップ検出パイプラインについて述べる。
分散力を正確に推定する視覚ベースの触覚センサを、6自由度コボットと2フィンガーグリップパーからなる把握装置に統合した。
その結果, 形状, 材料, 重量の異なる物体を操作しながら, スリップを確実に予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-23T17:12:46Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - Under Pressure: Learning to Detect Slip with Barometric Tactile Sensors [7.35805050004643]
本稿では,バロメトリック触覚センサを用いたスリップ検出法を提案する。
我々は91%以上のスリップ検出精度を達成することができる。
バロメトリック触覚センシング技術とデータ駆動学習の組み合わせは、多くの複雑な操作タスクに適しています。
論文 参考訳(メタデータ) (2021-03-24T19:29:03Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
既存の触覚センサーは、平らで、感度が小さいか、低解像度の信号のみを提供する。
我々は,多方向高解像度触覚センサOmniTactを紹介する。
我々は,ロボット制御の課題に対して,OmniTactの能力を評価する。
論文 参考訳(メタデータ) (2020-03-16T01:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。