Semi-Supervised Learning for Bone Mineral Density Estimation in Hip
X-ray Images
- URL: http://arxiv.org/abs/2103.13482v1
- Date: Wed, 24 Mar 2021 20:59:54 GMT
- Title: Semi-Supervised Learning for Bone Mineral Density Estimation in Hip
X-ray Images
- Authors: Kang Zheng, Yirui Wang, Xiaoyun Zhou, Fakai Wang, Le Lu, Chihung Lin,
Lingyun Huang, Guotong Xie, Jing Xiao, Chang-Fu Kuo, Shun Miao
- Abstract summary: Bone mineral density is a clinically critical indicator of osteoporosis.
Due to the limited accessibility of DEXA machines and examinations, osteoporosis is often under-diagnosed and under-treated.
- Score: 19.17169803995019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bone mineral density (BMD) is a clinically critical indicator of
osteoporosis, usually measured by dual-energy X-ray absorptiometry (DEXA). Due
to the limited accessibility of DEXA machines and examinations, osteoporosis is
often under-diagnosed and under-treated, leading to increased fragility
fracture risks. Thus it is highly desirable to obtain BMDs with alternative
cost-effective and more accessible medical imaging examinations such as X-ray
plain films. In this work, we formulate the BMD estimation from plain hip X-ray
images as a regression problem. Specifically, we propose a new semi-supervised
self-training algorithm to train the BMD regression model using images coupled
with DEXA measured BMDs and unlabeled images with pseudo BMDs. Pseudo BMDs are
generated and refined iteratively for unlabeled images during self-training. We
also present a novel adaptive triplet loss to improve the model's regression
accuracy. On an in-house dataset of 1,090 images (819 unique patients), our BMD
estimation method achieves a high Pearson correlation coefficient of 0.8805 to
ground-truth BMDs. It offers good feasibility to use the more accessible and
cheaper X-ray imaging for opportunistic osteoporosis screening.
Related papers
- Bone mineral density estimation from a plain X-ray image by learning
decomposition into projections of bone-segmented computed tomography [4.872603360039571]
Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, leading to a decline in daily living activities.
To frequently monitor bone health, low-cost, low-dose, and ubiquitously available diagnostic methods are highly anticipated.
In this study, we aim to perform bone mineral density estimation from a plain X-ray image for opportunistic screening.
arXiv Detail & Related papers (2023-07-21T11:49:30Z) - MSKdeX: Musculoskeletal (MSK) decomposition from an X-ray image for
fine-grained estimation of lean muscle mass and muscle volume [5.1294076116231455]
Musculoskeletal diseases such as sarcopenia and osteoporosis are major obstacles to health during aging.
We propose a method to estimate fine-grained muscle properties from a plain X-ray image, a low-cost, low-radiation, and highly accessible imaging modality.
arXiv Detail & Related papers (2023-05-31T14:56:18Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
We formulate the self- and report-completion as two complementary objectives and present a unified framework based on masked record modeling (MRM)
MRM reconstructs masked image patches and masked report tokens following a multi-task scheme to learn knowledge-enhanced semantic representations.
Specifically, we find that MRM offers superior performance in label-efficient fine-tuning.
arXiv Detail & Related papers (2023-01-30T18:33:32Z) - BMD-GAN: Bone mineral density estimation using x-ray image decomposition
into projections of bone-segmented quantitative computed tomography using
hierarchical learning [1.8762753243053634]
We propose an approach using the QCT for training a generative adversarial network (GAN) and decomposing an x-ray image into a projection of bone-segmented QCT.
The evaluation of 200 patients with osteoarthritis using the proposed method demonstrated a Pearson correlation coefficient of 0.888 between the predicted and ground truth.
arXiv Detail & Related papers (2022-07-07T10:33:12Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Fast and Robust Femur Segmentation from Computed Tomography Images for
Patient-Specific Hip Fracture Risk Screening [48.46841573872642]
We propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT.
Our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
arXiv Detail & Related papers (2022-04-20T16:16:16Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Lumbar Bone Mineral Density Estimation from Chest X-ray Images:
Anatomy-aware Attentive Multi-ROI Modeling [23.014342480592873]
Osteoporosis is a chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density examinations.
In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most commonly accessible and low-cost medical imaging examinations.
arXiv Detail & Related papers (2022-01-05T22:03:32Z) - Opportunistic Screening of Osteoporosis Using Plain Film Chest X-ray [23.41545684473636]
Osteoporosis is a chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density examinations.
In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most common, accessible, and low-cost medical image examinations.
arXiv Detail & Related papers (2021-04-05T01:25:23Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.