Bone mineral density estimation from a plain X-ray image by learning
decomposition into projections of bone-segmented computed tomography
- URL: http://arxiv.org/abs/2307.11513v1
- Date: Fri, 21 Jul 2023 11:49:30 GMT
- Title: Bone mineral density estimation from a plain X-ray image by learning
decomposition into projections of bone-segmented computed tomography
- Authors: Yi Gu, Yoshito Otake, Keisuke Uemura, Mazen Soufi, Masaki Takao,
Hugues Talbot, Seiji Okada, Nobuhiko Sugano, Yoshinobu Sato
- Abstract summary: Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, leading to a decline in daily living activities.
To frequently monitor bone health, low-cost, low-dose, and ubiquitously available diagnostic methods are highly anticipated.
In this study, we aim to perform bone mineral density estimation from a plain X-ray image for opportunistic screening.
- Score: 4.872603360039571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Osteoporosis is a prevalent bone disease that causes fractures in fragile
bones, leading to a decline in daily living activities. Dual-energy X-ray
absorptiometry (DXA) and quantitative computed tomography (QCT) are highly
accurate for diagnosing osteoporosis; however, these modalities require special
equipment and scan protocols. To frequently monitor bone health, low-cost,
low-dose, and ubiquitously available diagnostic methods are highly anticipated.
In this study, we aim to perform bone mineral density (BMD) estimation from a
plain X-ray image for opportunistic screening, which is potentially useful for
early diagnosis. Existing methods have used multi-stage approaches consisting
of extraction of the region of interest and simple regression to estimate BMD,
which require a large amount of training data. Therefore, we propose an
efficient method that learns decomposition into projections of bone-segmented
QCT for BMD estimation under limited datasets. The proposed method achieved
high accuracy in BMD estimation, where Pearson correlation coefficients of
0.880 and 0.920 were observed for DXA-measured BMD and QCT-measured BMD
estimation tasks, respectively, and the root mean square of the coefficient of
variation values were 3.27 to 3.79% for four measurements with different poses.
Furthermore, we conducted extensive validation experiments, including
multi-pose, uncalibrated-CT, and compression experiments toward actual
application in routine clinical practice.
Related papers
- Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - BMD-GAN: Bone mineral density estimation using x-ray image decomposition
into projections of bone-segmented quantitative computed tomography using
hierarchical learning [1.8762753243053634]
We propose an approach using the QCT for training a generative adversarial network (GAN) and decomposing an x-ray image into a projection of bone-segmented QCT.
The evaluation of 200 patients with osteoarthritis using the proposed method demonstrated a Pearson correlation coefficient of 0.888 between the predicted and ground truth.
arXiv Detail & Related papers (2022-07-07T10:33:12Z) - Fast and Robust Femur Segmentation from Computed Tomography Images for
Patient-Specific Hip Fracture Risk Screening [48.46841573872642]
We propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT.
Our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
arXiv Detail & Related papers (2022-04-20T16:16:16Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lumbar Bone Mineral Density Estimation from Chest X-ray Images:
Anatomy-aware Attentive Multi-ROI Modeling [23.014342480592873]
Osteoporosis is a chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density examinations.
In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most commonly accessible and low-cost medical imaging examinations.
arXiv Detail & Related papers (2022-01-05T22:03:32Z) - Opportunistic Screening of Osteoporosis Using Plain Film Chest X-ray [23.41545684473636]
Osteoporosis is a chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density examinations.
In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most common, accessible, and low-cost medical image examinations.
arXiv Detail & Related papers (2021-04-05T01:25:23Z) - Semi-Supervised Learning for Bone Mineral Density Estimation in Hip
X-ray Images [19.17169803995019]
Bone mineral density is a clinically critical indicator of osteoporosis.
Due to the limited accessibility of DEXA machines and examinations, osteoporosis is often under-diagnosed and under-treated.
arXiv Detail & Related papers (2021-03-24T20:59:54Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Introducing Anisotropic Minkowski Functionals for Local Structure
Analysis and Prediction of Biomechanical Strength of Proximal Femur Specimens [0.0]
Bone fragility and fracture caused by osteoporosis or injury are prevalent in adults over the age of 50 and can reduce their quality of life.
This study proposes a new method to predict the bone strength of proximal femur specimens from quantitative multi-detector computer tomography (MDCT) images.
arXiv Detail & Related papers (2020-04-02T14:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.