論文の概要: 3D Reasoning for Unsupervised Anomaly Detection in Pediatric WbMRI
- arxiv url: http://arxiv.org/abs/2103.13497v1
- Date: Wed, 24 Mar 2021 21:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 02:06:18.664676
- Title: 3D Reasoning for Unsupervised Anomaly Detection in Pediatric WbMRI
- Title(参考訳): 小児WbMRIにおける教師なし異常検出のための3次元推論
- Authors: Alex Chang, Vinith Suriyakumar, Abhishek Moturu, James Tu, Nipaporn
Tewattanarat, Sayali Joshi, Andrea Doria and Anna Goldenberg
- Abstract要約: 3Dコンテキストを取り入れて全身MRIのボリュームを処理することは,異常を良質のものと区別する上で有益であることを示す。
また,小児検診における異常検出をさらに改善するために,患者特有の特徴を付加することが有用であることを示した。
- 参考スコア(独自算出の注目度): 3.8583005413310625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern deep unsupervised learning methods have shown great promise for
detecting diseases across a variety of medical imaging modalities. While
previous generative modeling approaches successfully perform anomaly detection
by learning the distribution of healthy 2D image slices, they process such
slices independently and ignore the fact that they are correlated, all being
sampled from a 3D volume. We show that incorporating the 3D context and
processing whole-body MRI volumes is beneficial to distinguishing anomalies
from their benign counterparts. In our work, we introduce a multi-channel
sliding window generative model to perform lesion detection in whole-body MRI
(wbMRI). Our experiments demonstrate that our proposed method significantly
outperforms processing individual images in isolation and our ablations clearly
show the importance of 3D reasoning. Moreover, our work also shows that it is
beneficial to include additional patient-specific features to further improve
anomaly detection in pediatric scans.
- Abstract(参考訳): 現代の深層教師なし学習法は、様々な医用イメージングモードにまたがる疾患の検出に非常に有望である。
従来の生成モデルでは,正常な2次元画像スライス分布を学習して異常検出に成功していたが,これらスライスを独立に処理し,それらが相関しているという事実を無視し,すべて3次元ボリュームからサンプリングした。
3Dコンテキストを取り入れて全身MRIのボリュームを処理することは,異常を良質のものと区別する上で有益であることを示す。
本研究は,全身MRI(wbMRI)における病変検出を行うための多チャンネルスライディングウインドウ生成モデルを提案する。
実験の結果,提案手法は個々の画像の分離処理において著しく優れており,また3次元推論の重要性が明らかとなった。
さらに,本研究は,小児検診における異常検出をさらに改善するために,追加の患者固有の機能を含めることも有益であることを示す。
関連論文リスト
- Domain Aware Multi-Task Pretraining of 3D Swin Transformer for T1-weighted Brain MRI [4.453300553789746]
脳磁気共鳴画像(MRI)のための3次元スイム変換器の事前訓練のためのドメイン認識型マルチタスク学習タスクを提案する。
脳の解剖学と形態学を取り入れた脳MRIの領域知識と、対照的な学習環境での3Dイメージングに適応した標準的な前提課題を考察した。
本手法は,アルツハイマー病の分類,パーキンソン病の分類,年齢予測の3つの下流課題において,既存の指導的・自己監督的手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-01T05:21:02Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - AI-based association analysis for medical imaging using latent-space
geometric confounder correction [6.488049546344972]
複数の共同設立者に対する意味的特徴解釈とレジリエンスを強調するAI手法を提案する。
このアプローチのメリットは,2次元合成データセットから共同創設者のいない特徴を抽出すること,出生前アルコール暴露と幼児の顔面形状との関連性を検討すること,の3つのシナリオで検証されている。
その結果, 共同設立者の影響を効果的に低減し, 共同設立団体の設立を減らした。
論文 参考訳(メタデータ) (2023-10-03T16:09:07Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Inlicit Neural Representations (INR) は連続空間関数における相補的視点の2つの異なるコントラストを学習することを提案した。
我々のモデルは、3つのデータセットを用いた実験において、異なるコントラストのペア間で現実的な超解像を提供する。
論文 参考訳(メタデータ) (2023-03-27T10:18:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - Leveraging 3D Information in Unsupervised Brain MRI Segmentation [1.6148039130053087]
Unsupervised Anomaly Detection (UAD) 法を提案し,Variational Autoencoder (VAE) を用いて学習した健常モデルの異常を検出する。
本稿では,UADを3D方式で実行し,2Dと3DのVAEを比較することを提案する。
サイドコントリビューションとして、堅牢なトレーニングを保証する新しい損失機能を紹介します。
学習は、健康な脳MRIの多心性データセットを使用して行われ、白マター高輝度および腫瘍病変のセグメント化性能が推定される。
論文 参考訳(メタデータ) (2021-01-26T10:04:57Z) - Unsupervised 3D Brain Anomaly Detection [0.0]
異常検出(AD)とは、学習したデータ分布に適合しないデータサンプルの同定である。
GAN(Generative Adrial Networks)のような深層生成モデルは、解剖学的変動を捉えるために利用される。
本研究では、1つのモデルで体積データを効率的に処理し、3次元脳異常を検出する最初のADアプローチを例示する。
論文 参考訳(メタデータ) (2020-10-09T17:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。