The Inescapable Duality of Data and Knowledge
- URL: http://arxiv.org/abs/2103.13520v1
- Date: Wed, 24 Mar 2021 23:07:47 GMT
- Title: The Inescapable Duality of Data and Knowledge
- Authors: Amit Sheth and Krishnaprasad Thirunarayan
- Abstract summary: We will discuss how systems that focused only on data have been handicapped with success focused on narrowly focused tasks.
We will draw a parallel with the role of knowledge and experience in human intelligence based on cognitive science.
- Score: 4.498300638473408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We will discuss how over the last 30 to 50 years, systems that focused only
on data have been handicapped with success focused on narrowly focused tasks,
and knowledge has been critical in developing smarter, intelligent, more
effective systems. We will draw a parallel with the role of knowledge and
experience in human intelligence based on cognitive science. And we will end
with the recent interest in neuro-symbolic or hybrid AI systems in which
knowledge is the critical enabler for combining data-intensive statistical AI
systems with symbolic AI systems which results in more capable AI systems that
support more human-like intelligence.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic
AI [33.0761784111292]
Neuro-symbolic AI emerges as a promising paradigm to enhance interpretability, robustness, and trustworthiness.
Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
arXiv Detail & Related papers (2024-01-02T05:00:54Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Non-equilibrium physics: from spin glasses to machine and neural
learning [0.0]
Disordered many-body systems exhibit a wide range of emergent phenomena across different scales.
We aim to characterize such emergent intelligence in disordered systems through statistical physics.
We uncover relationships between learning mechanisms and physical dynamics that could serve as guiding principles for designing intelligent systems.
arXiv Detail & Related papers (2023-08-03T04:56:47Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
We claim that the future of human-machine collaboration will entail the development of AI systems that model, understand and possibly replicate human cognitive biases.
We categorize existing cognitive biases from the perspective of AI systems, identify three broad areas of interest and outline research directions for the design of AI systems that have a better understanding of our own biases.
arXiv Detail & Related papers (2022-10-01T02:52:38Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence.
This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences.
arXiv Detail & Related papers (2021-02-11T05:44:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.