Task-Oriented Low-Dose CT Image Denoising
- URL: http://arxiv.org/abs/2103.13557v1
- Date: Thu, 25 Mar 2021 01:47:55 GMT
- Title: Task-Oriented Low-Dose CT Image Denoising
- Authors: Jiajin Zhang, Hanqing Chao, Xuanang Xu, Chuang Niu, Ge Wang and
Pingkun Yan
- Abstract summary: We introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks.
The presented work may shed light on the future development of context-aware image denoising methods.
- Score: 11.278150927185994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extensive use of medical CT has raised a public concern over the
radiation dose to the patient. Reducing the radiation dose leads to increased
CT image noise and artifacts, which can adversely affect not only the
radiologists judgement but also the performance of downstream medical image
analysis tasks. Various low-dose CT denoising methods, especially the recent
deep learning based approaches, have produced impressive results. However, the
existing denoising methods are all downstream-task-agnostic and neglect the
diverse needs of the downstream applications. In this paper, we introduce a
novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss
leveraging knowledge from the downstream tasks. Comprehensive empirical
analysis shows that the task-oriented loss complements other task agnostic
losses by steering the denoiser to enhance the image quality in the task
related regions of interest. Such enhancement in turn brings general boosts on
the performance of various methods for the downstream task. The presented work
may shed light on the future development of context-aware image denoising
methods.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Window-Level is a Strong Denoising Surrogate [0.7251305766151019]
High radiation can be harmful to both patients and operators.
Deep learning-based approaches have been attempted to denoise low dose images.
Self-supervised learning is an emerging alternative for lowering the reference data requirement.
arXiv Detail & Related papers (2021-05-15T07:01:07Z) - Lesion-Inspired Denoising Network: Connecting Medical Image Denoising
and Lesion Detection [6.170271503640482]
We propose Lesion-Inspired Denoising Network (LIDnet) to improve both denoising performance and lesion detection accuracy.
Experiments show that, by equipping with LIDnet, both of the denoising and lesion detection performance of baseline methods can be significantly improved.
arXiv Detail & Related papers (2021-04-18T12:53:36Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
arXiv Detail & Related papers (2021-02-03T13:51:33Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.