Window-Level is a Strong Denoising Surrogate
- URL: http://arxiv.org/abs/2105.07153v1
- Date: Sat, 15 May 2021 07:01:07 GMT
- Title: Window-Level is a Strong Denoising Surrogate
- Authors: Ayaan Haque, Adam Wang, Abdullah-Al-Zubaer Imran
- Abstract summary: High radiation can be harmful to both patients and operators.
Deep learning-based approaches have been attempted to denoise low dose images.
Self-supervised learning is an emerging alternative for lowering the reference data requirement.
- Score: 0.7251305766151019
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: CT image quality is heavily reliant on radiation dose, which causes a
trade-off between radiation dose and image quality that affects the subsequent
image-based diagnostic performance. However, high radiation can be harmful to
both patients and operators. Several (deep learning-based) approaches have been
attempted to denoise low dose images. However, those approaches require access
to large training sets, specifically the full dose CT images for reference,
which can often be difficult to obtain. Self-supervised learning is an emerging
alternative for lowering the reference data requirement facilitating
unsupervised learning. Currently available self-supervised CT denoising works
are either dependent on foreign domain or pretexts are not very task-relevant.
To tackle the aforementioned challenges, we propose a novel self-supervised
learning approach, namely Self-Supervised Window-Leveling for Image DeNoising
(SSWL-IDN), leveraging an innovative, task-relevant, simple, yet effective
surrogate -- prediction of the window-leveled equivalent. SSWL-IDN leverages
residual learning and a hybrid loss combining perceptual loss and MSE, all
incorporated in a VAE framework. Our extensive (in- and cross-domain)
experimentation demonstrates the effectiveness of SSWL-IDN in aggressive
denoising of CT (abdomen and chest) images acquired at 5\% dose level only.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Restoring Vision in Hazy Weather with Hierarchical Contrastive Learning [53.85892601302974]
We propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD)
HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL)
arXiv Detail & Related papers (2022-12-22T03:57:06Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Task-Oriented Low-Dose CT Image Denoising [11.278150927185994]
We introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks.
The presented work may shed light on the future development of context-aware image denoising methods.
arXiv Detail & Related papers (2021-03-25T01:47:55Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
arXiv Detail & Related papers (2021-02-03T13:51:33Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Probabilistic self-learning framework for Low-dose CT Denoising [1.8734449181723827]
Decreasing the exposure can reduce the dose and hence the radiation-related risk.
Supervised deep learning can be used to train a neural network to denoise the low-dose CT (LDCT)
arXiv Detail & Related papers (2020-05-30T17:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.