論文の概要: Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report
- arxiv url: http://arxiv.org/abs/2103.13590v1
- Date: Thu, 25 Mar 2021 03:46:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:23:24.718670
- Title: Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report
- Title(参考訳): 知的エッセイスコアリングとフィードバックシステムに関するエンジニアリング--経験報告
- Authors: Akriti Chadda, Kelly Song, Raman Chandrasekar, Ian Gorton
- Abstract要約: 専門的な採用支援サービスの顧客から提供されるエッセイの質を評価するための探索システムについて述べる。
オープンエンドの顧客提供のソーステキストがあいまいさとエラーのかなりの範囲を持っているため、問題領域は困難です。
また、専門的なビジネスドメイン知識をインテリジェントな処理システムに組み込む必要もあります。
- 参考スコア(独自算出の注目度): 1.5168188294440734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) / Machine Learning (ML)-based systems are widely
sought-after commercial solutions that can automate and augment core business
services. Intelligent systems can improve the quality of services offered and
support scalability through automation. In this paper we describe our
experience in engineering an exploratory system for assessing the quality of
essays supplied by customers of a specialized recruitment support service. The
problem domain is challenging because the open-ended customer-supplied source
text has considerable scope for ambiguity and error, making models for analysis
hard to build. There is also a need to incorporate specialized business domain
knowledge into the intelligent processing systems. To address these challenges,
we experimented with and exploited a number of cloud-based machine learning
models and composed them into an application-specific processing pipeline. This
design allows for modification of the underlying algorithms as more data and
improved techniques become available. We describe our design, and the main
challenges we faced, namely keeping a check on the quality control of the
models, testing the software and deploying the computationally expensive ML
models on the cloud.
- Abstract(参考訳): 人工知能(AI) / 機械学習(ML)ベースのシステムは、コアビジネスサービスの自動化と拡張を可能にする商用ソリューションとして広く求められている。
インテリジェントシステムは提供されたサービスの品質を改善し、自動化によるスケーラビリティをサポートする。
本稿では,特別採用支援サービスの顧客から提供されたエッセイの品質評価のための探索システムの設計経験について述べる。
問題領域は、オープンエンドの顧客供給のソーステキストが曖昧さとエラーに対してかなりのスコープを持っているため、分析のモデルの構築が難しいため、困難である。
また、インテリジェントな処理システムに専門的なビジネスドメインの知識を組み込む必要もあります。
これらの課題に対処するため、クラウドベースの機械学習モデルを試行し、それらをアプリケーション固有の処理パイプラインに構成しました。
この設計により、より多くのデータと改良された技術が利用可能になると、基礎となるアルゴリズムの変更が可能になる。
すなわち、モデルの品質管理を確認し、ソフトウェアをテストし、計算に高価なMLモデルをクラウドにデプロイすることです。
関連論文リスト
- Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
オープンでカスタマイズ可能な小型コード言語モデル(SLM)を強化するためにRAIT(Retrieval-Augmented Instruction-Tuning)を活用する新しい自律エージェントフレームワークを提案する。
命令チューニングされたコードSLMと外部ツールを使用してRACG(Retrieval-Augmented Code Generation)を組み合わせることで、エージェントは自然言語仕様からコードを生成し、デバッグし、最適化する。
我々のアプローチは、専門的なプロセスエンジニアリングタスクのための基礎的AIモデルの欠如の限界に対処し、説明可能性、知識編集、費用対効果の利点を提供する。
論文 参考訳(メタデータ) (2024-08-28T15:33:47Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
本章では、ソフトウェア工学全般の進化する展望、特に要件工学(RE)について論じている。
自然言語処理(NLP)と生成AIをエンタープライズクリティカルなソフトウェアシステムに統合する際に生じる課題について論じる。
本は、読者に必要な知識とツールを提供するために、実践的な洞察、解決策、例を提供する。
論文 参考訳(メタデータ) (2024-02-26T19:19:47Z) - DistALANER: Distantly Supervised Active Learning Augmented Named Entity Recognition in the Open Source Software Ecosystem [4.368725325557961]
本稿では,オープンソースソフトウェアシステムに適したエンティティ認識(NER)技術を提案する。
提案手法は,2段階の遠隔教師付きアノテーションプロセスを用いて,注釈付きソフトウェアデータの不足に対処することを目的としている。
我々のモデルは最先端のLLMよりもかなり優れています。
論文 参考訳(メタデータ) (2024-02-25T17:40:49Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。