論文の概要: AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges
- arxiv url: http://arxiv.org/abs/2304.04661v1
- Date: Mon, 10 Apr 2023 15:38:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 14:32:41.896416
- Title: AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges
- Title(参考訳): AI for IT Operations (AIOps) on Cloud Platforms: レビュー、機会、課題
- Authors: Qian Cheng, Doyen Sahoo, Amrita Saha, Wenzhuo Yang, Chenghao Liu,
Gerald Woo, Manpreet Singh, Silvio Saverese, Steven C. H. Hoi
- Abstract要約: IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
- 参考スコア(独自算出の注目度): 60.56413461109281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence for IT operations (AIOps) aims to combine the power
of AI with the big data generated by IT Operations processes, particularly in
cloud infrastructures, to provide actionable insights with the primary goal of
maximizing availability. There are a wide variety of problems to address, and
multiple use-cases, where AI capabilities can be leveraged to enhance
operational efficiency. Here we provide a review of the AIOps vision, trends
challenges and opportunities, specifically focusing on the underlying AI
techniques. We discuss in depth the key types of data emitted by IT Operations
activities, the scale and challenges in analyzing them, and where they can be
helpful. We categorize the key AIOps tasks as - incident detection, failure
prediction, root cause analysis and automated actions. We discuss the problem
formulation for each task, and then present a taxonomy of techniques to solve
these problems. We also identify relatively under explored topics, especially
those that could significantly benefit from advances in AI literature. We also
provide insights into the trends in this field, and what are the key investment
opportunities.
- Abstract(参考訳): IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセス、特にクラウドインフラストラクチャで生成されたビッグデータを組み合わせることを目的としており、可用性を最大化する主な目標として実行可能な洞察を提供する。
対処すべきさまざまな問題と、運用効率を高めるためにAI機能を活用可能な複数のユースケースがあります。
ここでは、AIOpsのビジョン、トレンドの課題、機会、特に基盤となるAI技術についてレビューする。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
各タスクの課題定式化について議論し,これらの問題を解決するための手法の分類法を提案する。
また、調査対象のトピック、特にAI文学の進歩から大きな恩恵を受ける可能性のあるトピックも特定しています。
また、この分野のトレンドや重要な投資機会についての洞察も提供します。
関連論文リスト
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - More Questions than Answers? Lessons from Integrating Explainable AI into a Cyber-AI Tool [1.5711133309434766]
ソースコード分類におけるXAIの使用に関する予備的事例研究について述べる。
我々は、AIの専門知識がほとんどない人々によって解釈されると、最先端の正当性説明技法の出力が翻訳で失われることを発見した。
実用的で効果的なXAIにおける非適応的なギャップを概説し、次に、LLM(Large Language Models)のような新興技術が、これらの既存の障害を緩和する方法について触れます。
論文 参考訳(メタデータ) (2024-08-08T20:09:31Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
本稿では,人工知能(AI)をサイバー脅威知能(CTI)に統合する可能性について検討する。
我々は、AIに強化されたCTI処理パイプラインの青写真を提供し、そのコンポーネントと機能について詳述する。
倫理的ジレンマ、潜在的なバイアス、そしてAIによる意思決定における透明性の必須事項について論じる。
論文 参考訳(メタデータ) (2024-03-05T19:03:56Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Towards AI-Empowered Crowdsourcing [27.0404686687184]
本稿では,AIを活用したクラウドソーシングをタスク委譲,労働者のモチベーション,品質管理の3分野に分けた分類法を提案する。
限界と洞察を議論し、これらの領域で研究を行う上での課題を整理し、将来有望な研究方向性を明らかにする。
論文 参考訳(メタデータ) (2022-12-28T05:06:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。