論文の概要: On the Complexity of Learning Description Logic Ontologies
- arxiv url: http://arxiv.org/abs/2103.13694v1
- Date: Thu, 25 Mar 2021 09:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 20:37:56.589538
- Title: On the Complexity of Learning Description Logic Ontologies
- Title(参考訳): 記述論理オントロジー学習の複雑さについて
- Authors: Ana Ozaki
- Abstract要約: オントロジーはドメイン知識、特に生命科学に関連する領域における知識を表現する一般的な方法である。
学習理論から正確な学習モデルとおそらく正しい学習モデルの形式的な仕様を提供します。
- 参考スコア(独自算出の注目度): 14.650545418986058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontologies are a popular way of representing domain knowledge, in particular,
knowledge in domains related to life sciences. (Semi-)automating the process of
building an ontology has attracted researchers from different communities into
a field called "Ontology Learning". We provide a formal specification of the
exact and the probably approximately correct learning models from computational
learning theory. Then, we recall from the literature complexity results for
learning lightweight description logic (DL) ontologies in these models.
Finally, we highlight other approaches proposed in the literature for learning
DL ontologies.
- Abstract(参考訳): オントロジーはドメイン知識、特に生命科学に関連する領域における知識を表現する一般的な方法である。
(半)オントロジーを構築する過程の自動化は、異なるコミュニティの研究者を「オントロジー学習」という分野に引き寄せている。
計算学習理論から得られた正確かつほぼ正しい学習モデルの正式な仕様を提供する。
そして、これらのモデルにおける軽量記述論理(DL)オントロジーを学習するための文献複雑性結果から記憶する。
最後に,DLオントロジーの学習における文献的アプローチについて述べる。
関連論文リスト
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
複雑な問題に対処するために, LLM の反応性を向上し, 活用するための新しいアプローチを提案する。
我々は,大規模言語モデルの強みと構造的意味表現を組み合わせた,多モーダルで知識を付加した意味の形式表現を作成する。
非構造化言語モデルと形式的意味構造とのギャップを埋めることで、自然言語理解と推論における複雑な問題に対処するための新たな道を開く。
論文 参考訳(メタデータ) (2024-11-19T17:23:55Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - A Short Review for Ontology Learning: Stride to Large Language Models Trend [1.7142222335232333]
オントロジーは、Webアプリケーション内で共有される知識の形式的な表現を提供する。
新しいアプローチのトレンドは、オントロジー学習を強化するために、大きな言語モデル(LLM)に依存している。
論文 参考訳(メタデータ) (2024-04-23T12:47:31Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Position: Topological Deep Learning is the New Frontier for Relational Learning [51.05869778335334]
トポロジカルディープラーニング(TDL)は、トポロジカルな特徴を用いてディープラーニングモデルを理解し設計する、急速に進化する分野である。
本稿では,TDLがリレーショナル学習の新たなフロンティアであることを示す。
論文 参考訳(メタデータ) (2024-02-14T00:35:10Z) - Reorganizing Educational Institutional Domain using Faceted Ontological
Principles [0.0]
本研究は,図書館分類システムと言語手法の違いが,特定の分野にどのような影響を及ぼすかを明らかにすることを目的とする。
特定のドメイン固有のオントロジーには、知識表現と言語を使用します。
この構造は問題解決の助けとなるだけでなく、複雑なクエリを簡単に扱えることを示すのにも役立ちます。
論文 参考訳(メタデータ) (2023-06-17T09:06:07Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - Learning Description Logic Ontologies. Five Approaches. Where Do They
Stand? [14.650545418986058]
我々は、記述論理(DL)の作成のために提案された機械学習とデータマイニングのアプローチを強調した。
これらは関連ルールマイニング、形式的概念分析、帰納的論理プログラミング、計算学習理論、ニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2021-04-02T18:36:45Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Knowledge Patterns [19.57676317580847]
本稿では,公理に富む形式オントロジー構築を支援する新しい手法である「知識パターン」について述べる。
知識パターンは、形式オントロジーの構造に関する重要な洞察を提供する。
それらを使って構築されたテクニックとアプリケーションを説明し、その強みと弱点を批判する。
論文 参考訳(メタデータ) (2020-05-08T22:33:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。