論文の概要: Language Models as Ontology Encoders
- arxiv url: http://arxiv.org/abs/2507.14334v1
- Date: Fri, 18 Jul 2025 19:26:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.844563
- Title: Language Models as Ontology Encoders
- Title(参考訳): オントロジーエンコーダとしての言語モデル
- Authors: Hui Yang, Jiaoyan Chen, Yuan He, Yongsheng Gao, Ian Horrocks,
- Abstract要約: オントロジー埋め込みは、妥当な新しい知識と近似的な複雑な推論を推測することができる。
OnTは、幾何空間に双曲的モデリングを組み込むことにより、事前訓練されたモデル言語(PLM)をチューニングする。
OnTは、予測と推論の両方のタスクにおいて、ベースラインを一貫して上回る。
- 参考スコア(独自算出の注目度): 32.148744398729896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.
- Abstract(参考訳): 複雑な知識を形式的に表現し、意味論的推論をサポートするOWLオントロジーは、医療やバイオインフォマティクスといった様々な領域で広く採用されている。
近年, オントロジーの埋め込みは, 実証可能な新しい知識を推測し, 複雑な推論を行う可能性から, 広く注目されている。
幾何学的モデルに基づく埋め込みは通常、貴重なテキスト情報を見落とし、最適以下のパフォーマンスをもたらすが、テキストを組み込むアプローチは、しばしば言語モデルに基づいており、論理構造を保たない。
本研究では,テキストラベルを効果的に組み込んだ幾何学的モデリングと,クラス階層と記述論理ELの論理的関係を同時に保持する,事前学習言語モデル(PLM)を調整した新しいオントロジー埋め込み手法OnTを提案する。
実世界の4つのオントロジに関する大規模な実験では、OnTは予測と公理の推論の両方のタスクにおいて、最先端を含むベースラインを一貫して上回っている。
OnTはまた、SNOMED CTから新しいオントロジーを構築する実際のケースにおいて、その堅牢な転送学習能力と有効性によって示される、現実世界のアプリケーションに強い可能性を示す。
データとコードはhttps://github.com/HuiYang1997/OnT.comで入手できる。
関連論文リスト
- TransBox: EL++-closed Ontology Embedding [14.850996103983187]
我々は,多対一,一対多,多対多の関係を扱える効率的なEL++-クロース埋め込み法を開発した。
実験により,TransBoxは様々な実世界のデータセットにまたがって最先端のパフォーマンスを実現し,複雑な公理を予測できることを示した。
論文 参考訳(メタデータ) (2024-10-18T16:17:10Z) - Ontological Relations from Word Embeddings [2.384873896423002]
BERTのような一般的なニューラルモデルから得られる単語埋め込みの類似性は、それらの単語の意味の意味的類似性の形で効果的に近似することが確実に示されている。
これらの埋め込みの上に単純なフィードフォワードアーキテクチャを組み込むことで、入力データに応じて様々な一般化能力を持つ有望な精度が得られることを示す。
論文 参考訳(メタデータ) (2024-08-01T10:31:32Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オンロジはドメインの知識とメタデータを表現するために広く使われている。
直接支援できる論理的推論は、学習、近似、予測において非常に限られています。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Position: Topological Deep Learning is the New Frontier for Relational Learning [51.05869778335334]
トポロジカルディープラーニング(TDL)は、トポロジカルな特徴を用いてディープラーニングモデルを理解し設計する、急速に進化する分野である。
本稿では,TDLがリレーショナル学習の新たなフロンティアであることを示す。
論文 参考訳(メタデータ) (2024-02-14T00:35:10Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Dual Box Embeddings for the Description Logic EL++ [16.70961576041243]
知識グラフ(KG)と同様に、知識グラフはしばしば不完全であり、それらの維持と構築は困難であることが証明された。
KGsと同様に、有望なアプローチは、潜在ベクトル空間への埋め込みを学習し、基礎となるDLのセマンティクスに固執することである。
そこで本研究では,概念と役割をボックスとして表現した,DL EL++用のBox$2$ELという新しいオントロジー埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-01-26T14:13:37Z) - Contextual Semantic Embeddings for Ontology Subsumption Prediction [37.61925808225345]
本稿では,Web Ontology (OWL) のクラスに BERTSubs というコンテキスト埋め込みの新たな予測手法を提案する。
これは、事前訓練された言語モデルBERTを利用してクラスの埋め込みを計算し、クラスコンテキストと論理的存在制約を組み込むためにカスタマイズされたテンプレートを提案する。
論文 参考訳(メタデータ) (2022-02-20T11:14:04Z) - Logical Natural Language Generation from Open-Domain Tables [107.04385677577862]
本稿では,その事実に関連付けられた自然言語文をモデルで生成するタスクを提案する。
提案した論理的 NLG 問題の研究を容易にするために,幅広い論理的・記号的推論を特徴とする既存の TabFact データセットcitechen 2019tabfact を用いる。
新しいタスクは、シーケンス順序と論理順序のミスマッチのため、既存のモノトニック生成フレームワークに課題をもたらす。
論文 参考訳(メタデータ) (2020-04-22T06:03:10Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
文法に基づく意味解析を行い,その上に典型的な文脈モデリング手法を適用する。
我々は,2つの大きなクロスドメインデータセットに対して,13のコンテキストモデリング手法を評価した。
論文 参考訳(メタデータ) (2020-02-03T11:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。