Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering
- URL: http://arxiv.org/abs/2404.05211v1
- Date: Mon, 8 Apr 2024 05:50:46 GMT
- Title: Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering
- Authors: Jingxin Wang, Renxiang Guan, Kainan Gao, Zihao Li, Hao Li, Xianju Li, Chang Tang,
- Abstract summary: This study proposes a multi-level graph subspace contrastive learning (MLGSC) for HSI clustering.
The proposed model is evaluated on four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou.
The overall accuracies are 97.75%, 99.96%, 92.28%, and 95.73%, which significantly outperforms the current state-of-the-art clustering methods.
- Score: 16.027471624621924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) clustering is a challenging task due to its high complexity. Despite subspace clustering shows impressive performance for HSI, traditional methods tend to ignore the global-local interaction in HSI data. In this study, we proposed a multi-level graph subspace contrastive learning (MLGSC) for HSI clustering. The model is divided into the following main parts. Graph convolution subspace construction: utilizing spectral and texture feautures to construct two graph convolution views. Local-global graph representation: local graph representations were obtained by step-by-step convolutions and a more representative global graph representation was obtained using an attention-based pooling strategy. Multi-level graph subspace contrastive learning: multi-level contrastive learning was conducted to obtain local-global joint graph representations, to improve the consistency of the positive samples between views, and to obtain more robust graph embeddings. Specifically, graph-level contrastive learning is used to better learn global representations of HSI data. Node-level intra-view and inter-view contrastive learning is designed to learn joint representations of local regions of HSI. The proposed model is evaluated on four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou. The overall accuracies are 97.75%, 99.96%, 92.28%, and 95.73%, which significantly outperforms the current state-of-the-art clustering methods.
Related papers
- Multiview Subspace Clustering of Hyperspectral Images based on Graph
Convolutional Networks [12.275530282665578]
This study proposes a multiview subspace clustering of hy-perspectral images (HSI) based on graph convolutional networks.
The model was evaluated on three popular HSI datasets, including Indian Pines, Pavia University, and Houston.
It achieved overall accuracies of 92.38%, 93.43%, and 83.82%, respectively, and significantly outperformed the state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-03-03T10:19:18Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
Subspace clustering is an effective approach for clustering hyperspectral images.
In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks.
The proposed model effectively improves the clustering accuracy of HSI.
arXiv Detail & Related papers (2023-12-11T02:22:10Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.