Semi-supervised Superpixel-based Multi-Feature Graph Learning for
Hyperspectral Image Data
- URL: http://arxiv.org/abs/2104.13268v1
- Date: Tue, 27 Apr 2021 15:36:26 GMT
- Title: Semi-supervised Superpixel-based Multi-Feature Graph Learning for
Hyperspectral Image Data
- Authors: Madeleine Kotzagiannidis, Carola-Bibiane Sch\"onlieb
- Abstract summary: We present a novel framework for the classification of Hyperspectral Image (HSI) data in light of a very limited amount of labelled data.
We propose a multi-stage edge-efficient semi-supervised graph learning framework for HSI data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs naturally lend themselves to model the complexities of Hyperspectral
Image (HSI) data as well as to serve as semi-supervised classifiers by
propagating given labels among nearest neighbours. In this work, we present a
novel framework for the classification of HSI data in light of a very limited
amount of labelled data, inspired by multi-view graph learning and graph signal
processing. Given an a priori superpixel-segmented hyperspectral image, we seek
a robust and efficient graph construction and label propagation method to
conduct semi-supervised learning (SSL). Since the graph is paramount to the
success of the subsequent classification task, particularly in light of the
intrinsic complexity of HSI data, we consider the problem of finding the
optimal graph to model such data. Our contribution is two-fold: firstly, we
propose a multi-stage edge-efficient semi-supervised graph learning framework
for HSI data which exploits given label information through pseudo-label
features embedded in the graph construction. Secondly, we examine and enhance
the contribution of multiple superpixel features embedded in the graph on the
basis of pseudo-labels in an extension of the previous framework, which is less
reliant on excessive parameter tuning. Ultimately, we demonstrate the
superiority of our approaches in comparison with state-of-the-art methods
through extensive numerical experiments.
Related papers
- Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
We propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update.
To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets.
arXiv Detail & Related papers (2023-07-07T06:26:44Z) - High-order Multi-view Clustering for Generic Data [15.764819403555512]
Graph-based multi-view clustering has achieved better performance than most non-graph approaches.
We introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data.
arXiv Detail & Related papers (2022-09-22T07:49:38Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Semi-supervised Hyperspectral Image Classification with Graph Clustering
Convolutional Networks [41.78245271989529]
We propose a graph convolution network (GCN) based framework for HSI classification.
In particular, we first cluster the pixels with similar spectral features into a superpixel and build the graph based on the superpixels of the input HSI.
We then partition it into several sub-graphs by pruning the edges with weak weights, so as to strengthen the correlations of nodes with high similarity.
arXiv Detail & Related papers (2020-12-20T14:16:59Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.