論文の概要: A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios
- arxiv url: http://arxiv.org/abs/2103.13823v1
- Date: Wed, 24 Mar 2021 09:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:53:05.290347
- Title: A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios
- Title(参考訳): データ不均衡シナリオの分類改善のための適応的マイノリティオーバーサンプリング手法
- Authors: Ayush Triapthi and Rupayan Chakraborty and Sunil Kumar Kopparapu
- Abstract要約: 異なるクラスに属するトレーニングサンプルの割合の不均衡は、しばしば従来の分類器の性能低下を引き起こす。
不均衡なデータに対処する新しい3ステップ手法を提案する。
- 参考スコア(独自算出の注目度): 23.257891827728827
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Imbalance in the proportion of training samples belonging to different
classes often poses performance degradation of conventional classifiers. This
is primarily due to the tendency of the classifier to be biased towards the
majority classes in the imbalanced dataset. In this paper, we propose a novel
three step technique to address imbalanced data. As a first step we
significantly oversample the minority class distribution by employing the
traditional Synthetic Minority OverSampling Technique (SMOTE) algorithm using
the neighborhood of the minority class samples and in the next step we
partition the generated samples using a Gaussian-Mixture Model based clustering
algorithm. In the final step synthetic data samples are chosen based on the
weight associated with the cluster, the weight itself being determined by the
distribution of the majority class samples. Extensive experiments on several
standard datasets from diverse domains shows the usefulness of the proposed
technique in comparison with the original SMOTE and its state-of-the-art
variants algorithms.
- Abstract(参考訳): 異なるクラスに属するトレーニングサンプルの割合の不均衡は、しばしば従来の分類器の性能低下を引き起こす。
これは主に、不均衡なデータセットの多数クラスに対して分類器がバイアスを受ける傾向があるためである。
本稿では,不均衡なデータに対処する新しい3ステップ手法を提案する。
最初のステップとして、マイノリティクラスサンプルの近傍を用いて従来のSMOTE(Synthetic Minority OverSampling Technique)アルゴリズムを用いて、マイノリティクラス分布を著しくオーバーサンプリングし、次にガウス・ミクチャーモデルに基づくクラスタリングアルゴリズムを用いて生成されたサンプルを分割する。
最終ステップでは、クラスタに関連する重みに基づいて合成データサンプルを選択し、その重みそのものは、多数派サンプルの分布によって決定される。
様々な領域の標準データセットに関する広範囲な実験は、提案手法がオリジナルのsmoteや最先端の変種アルゴリズムと比較して有用であることを示している。
関連論文リスト
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Generative Oversampling for Imbalanced Data via Majority-Guided VAE [15.93867386081279]
本稿では,多数派の指導のもと,新たなマイノリティサンプルを生成する,Majority-Guided VAE(MGVAE)と呼ばれる新しいオーバーサンプリングモデルを提案する。
このようにして、新しく生成されたマイノリティサンプルは、大多数のサンプルの多様性と豊かさを継承することができ、下流タスクにおける過度な適合を軽減できる。
論文 参考訳(メタデータ) (2023-02-14T06:35:23Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
本稿では,新しいサンプルとベースクラス間の適応重み行列を学習し,新しい分布校正法を提案する。
標準ベンチマーク実験の結果,提案したプラグ・アンド・プレイモデルの方が競合する手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-10-09T02:32:57Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - A Novel Hybrid Sampling Framework for Imbalanced Learning [0.0]
SMOTE-RUS-NC」は他の最先端サンプリング技術と比較されている。
26個の不均衡なデータセットで厳密な実験が行われた。
論文 参考訳(メタデータ) (2022-08-20T07:04:00Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
提案手法は, 再加重法やオーバーサンプリング法と比較して, 平均精度を向上することを示す。
論文 参考訳(メタデータ) (2022-04-19T06:02:53Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
本稿では,データセットのクラス不均衡を処理するために,3人のプレイヤーによるゲームベースのエンドツーエンド手法を提案する。
本稿では,敵対的マイノリティ・オーバーサンプリングではなく,敵対的オーバーサンプリング (AO) とデータ空間・オーバーサンプリング (DO) のアプローチを提案する。
提案手法の有効性を高次元・高不均衡・大規模マルチクラスデータセットを用いて検証した。
論文 参考訳(メタデータ) (2021-08-20T05:43:17Z) - Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning [10.051309746913512]
本稿では,条件付きWasserstein GANに基づくオーバーサンプリング手法を提案する。
実世界の7つのデータセット上で,標準的なオーバーサンプリング手法と不均衡なベースラインに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-08-20T20:33:56Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。